IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v297y2021i1d10.1007_s10479-020-03582-z.html
   My bibliography  Save this article

Brexit and foreign exchange market expectations: Could it have been predicted?

Author

Listed:
  • Nikola Gradojevic

    (University of Guelph
    University of Novi Sad)

Abstract

In order to gauge foreign exchange market expectations prior to and after the Brexit vote in June, 2016, this paper examines European options written on the GBP/USD and GBP/EUR exchange rates in 2016. First, the parameter estimates from a non-parametric option pricing model with a homogeneity hint show that the Brexit announcement was to a certain extent expected because the implicit probability density functions were negatively skewed in January–February, 2016 and April–June, 2016. This effect was more pronounced for the GBP/USD exchange rates, indicating an increased pessimism of the U.S. currency traders relative to their European counterparts. Entropic risk measures based on skewness premia of deepest out-of-the-money options confirm the findings from implicit distributions. Moreover, these new risk measures are found to statistically significantly predict foreign exchange market volatility at daily to monthly time horizons.

Suggested Citation

  • Nikola Gradojevic, 2021. "Brexit and foreign exchange market expectations: Could it have been predicted?," Annals of Operations Research, Springer, vol. 297(1), pages 167-189, February.
  • Handle: RePEc:spr:annopr:v:297:y:2021:i:1:d:10.1007_s10479-020-03582-z
    DOI: 10.1007/s10479-020-03582-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-020-03582-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-020-03582-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bekiros, Stelios & Marcellino, Massimiliano, 2013. "The multiscale causal dynamics of foreign exchange markets," Journal of International Money and Finance, Elsevier, vol. 33(C), pages 282-305.
    2. P. Hammer & A. Kogan & M. Lejeune, 2011. "Reverse-engineering country risk ratings: a combinatorial non-recursive model," Annals of Operations Research, Springer, vol. 188(1), pages 185-213, August.
    3. Bates, David S, 1991. "The Crash of '87: Was It Expected? The Evidence from Options Markets," Journal of Finance, American Finance Association, vol. 46(3), pages 1009-1044, July.
    4. Hutchinson, James M & Lo, Andrew W & Poggio, Tomaso, 1994. "A Nonparametric Approach to Pricing and Hedging Derivative Securities via Learning Networks," Journal of Finance, American Finance Association, vol. 49(3), pages 851-889, July.
    5. Yangguang Zhu & Feng Yang & Wuyi Ye, 2018. "Financial contagion behavior analysis based on complex network approach," Annals of Operations Research, Springer, vol. 268(1), pages 93-111, September.
    6. Shaw, Duncan & Smith, Chris M. & Scully, Judy, 2017. "Why did Brexit happen? Using causal mapping to analyse secondary, longitudinal data," European Journal of Operational Research, Elsevier, vol. 263(3), pages 1019-1032.
    7. Gradojevic Nikola, 2016. "Multi-criteria classification for pricing European options," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(2), pages 123-139, April.
    8. Gençay, Ramazan & Gradojevic, Nikola, 2010. "Crash of '87 -- Was it expected?: Aggregate market fears and long-range dependence," Journal of Empirical Finance, Elsevier, vol. 17(2), pages 270-282, March.
    9. Ishizaki, Ryuji & Inoue, Masayoshi, 2013. "Time-series analysis of foreign exchange rates using time-dependent pattern entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(16), pages 3344-3350.
    10. Schiereck, D. & Kiesel, F. & Kolaric, S., 2016. "Brexit: (Not) another Lehman moment for banks?," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 82881, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    11. Garcia, Rene & Gencay, Ramazan, 2000. "Pricing and hedging derivative securities with neural networks and a homogeneity hint," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 93-115.
    12. Stelios Bekiros, 2014. "Timescale Analysis with an Entropy-Based Shift-Invariant Discrete Wavelet Transform," Computational Economics, Springer;Society for Computational Economics, vol. 44(2), pages 231-251, August.
    13. Martin, M.T. & Plastino, A.R. & Plastino, A., 2000. "Tsallis-like information measures and the analysis of complex signals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 275(1), pages 262-271.
    14. Xing, Yuhang & Zhang, Xiaoyan & Zhao, Rui, 2010. "What Does the Individual Option Volatility Smirk Tell Us About Future Equity Returns?," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 45(3), pages 641-662, June.
    15. Søren Asmussen & José Blanchet & Sandeep Juneja & Leonardo Rojas-Nandayapa, 2011. "Efficient simulation of tail probabilities of sums of correlated lognormals," Annals of Operations Research, Springer, vol. 189(1), pages 5-23, September.
    16. Namaki, A. & Koohi Lai, Z. & Jafari, G.R. & Raei, R. & Tehrani, R., 2013. "Comparing emerging and mature markets during times of crises: A non-extensive statistical approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(14), pages 3039-3044.
    17. Ben Sita, Bernard, 2017. "Volatility patterns of the constituents of FTSE100 in the aftermath of the U.K. Brexit referendum," Finance Research Letters, Elsevier, vol. 23(C), pages 137-146.
    18. Lisa Borland, 2002. "A theory of non-Gaussian option pricing," Quantitative Finance, Taylor & Francis Journals, vol. 2(6), pages 415-431.
    19. Lisa Borland, 2002. "A Theory of Non_Gaussian Option Pricing," Papers cond-mat/0205078, arXiv.org, revised Dec 2002.
    20. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    21. Diks, Cees & Panchenko, Valentyn, 2006. "A new statistic and practical guidelines for nonparametric Granger causality testing," Journal of Economic Dynamics and Control, Elsevier, vol. 30(9-10), pages 1647-1669.
    22. Adesina, Tola, 2017. "Estimating volatility persistence under a Brexit-vote structural break," Finance Research Letters, Elsevier, vol. 23(C), pages 65-68.
    23. Ramazan Gencay & Aslihan Salih, 2003. "Degree of Mispricing with the Black-Scholes Model and Nonparametric Cures," Annals of Economics and Finance, Society for AEF, vol. 4(1), pages 73-101, May.
    24. Nikola Gradojevic & Marko Caric, 2017. "Predicting Systemic Risk with Entropic Indicators," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(1), pages 16-25, January.
    25. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    26. Nikola Gradojevic & Ramazan Gencay & Dragan Kukolj, 2009. "Option Pricing with Modular Neural Networks," Working Paper series 32_09, Rimini Centre for Economic Analysis.
    27. Kitamura, Yuichi & Stutzer, Michael, 2002. "Connections between entropic and linear projections in asset pricing estimation," Journal of Econometrics, Elsevier, vol. 107(1-2), pages 159-174, March.
    28. Schiereck, Dirk & Kiesel, Florian & Kolaric, Sascha, 2016. "Brexit: (Not) another Lehman moment for banks?," Finance Research Letters, Elsevier, vol. 19(C), pages 291-297.
    29. Breitung, Jorg & Candelon, Bertrand, 2006. "Testing for short- and long-run causality: A frequency-domain approach," Journal of Econometrics, Elsevier, vol. 132(2), pages 363-378, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nikola Gradojevic & Marko Caric, 2017. "Predicting Systemic Risk with Entropic Indicators," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(1), pages 16-25, January.
    2. Gradojevic Nikola, 2016. "Multi-criteria classification for pricing European options," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(2), pages 123-139, April.
    3. Ke Nian & Thomas F. Coleman & Yuying Li, 2018. "Learning minimum variance discrete hedging directly from the market," Quantitative Finance, Taylor & Francis Journals, vol. 18(7), pages 1115-1128, July.
    4. Nikola Gradojevic & Dragan Kukolj & Ramazan Gencay, 2011. "Clustering and Classification in Option Pricing," Review of Economic Analysis, Digital Initiatives at the University of Waterloo Library, vol. 3(2), pages 109-128, October.
    5. Dragan Kukolj & Nikola Gradojevic & Camillo Lento, 2012. "Improving Non-Parametric Option Pricing during the Financial Crisis," Working Paper series 35_12, Rimini Centre for Economic Analysis.
    6. Arismendi, Juan & Genaro, Alan De, 2016. "A Monte Carlo multi-asset option pricing approximation for general stochastic processes," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 75-99.
    7. Haven, Emmanuel & Liu, Xiaoquan & Ma, Chenghu & Shen, Liya, 2009. "Revealing the implied risk-neutral MGF from options: The wavelet method," Journal of Economic Dynamics and Control, Elsevier, vol. 33(3), pages 692-709, March.
    8. Cao, Yi & Liu, Xiaoquan & Zhai, Jia, 2021. "Option valuation under no-arbitrage constraints with neural networks," European Journal of Operational Research, Elsevier, vol. 293(1), pages 361-374.
    9. Andreou, Panayiotis C. & Charalambous, Chris & Martzoukos, Spiros H., 2010. "Generalized parameter functions for option pricing," Journal of Banking & Finance, Elsevier, vol. 34(3), pages 633-646, March.
    10. repec:wyi:journl:002097 is not listed on IDEAS
    11. Liu, Xiaoquan & Cao, Yi & Ma, Chenghu & Shen, Liya, 2019. "Wavelet-based option pricing: An empirical study," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1132-1142.
    12. Anindya Goswami & Sharan Rajani & Atharva Tanksale, 2020. "Data-Driven Option Pricing using Single and Multi-Asset Supervised Learning," Papers 2008.00462, arXiv.org, revised Dec 2020.
    13. Gangadhar Nayak & Amit Kumar Singh & Dilip Senapati, 2021. "Computational Modeling of Non-Gaussian Option Price Using Non-extensive Tsallis’ Entropy Framework," Computational Economics, Springer;Society for Computational Economics, vol. 57(4), pages 1353-1371, April.
    14. Andreou, Panayiotis C. & Charalambous, Chris & Martzoukos, Spiros H., 2008. "Pricing and trading European options by combining artificial neural networks and parametric models with implied parameters," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1415-1433, March.
    15. repec:wyi:journl:002092 is not listed on IDEAS
    16. Yang Qu & Ming-Xi Wang, 2019. "The option pricing model based on time values: an application of the universal approximation theory on unbounded domains," Papers 1910.01490, arXiv.org, revised Apr 2021.
    17. Panayiotis Andreou & Chris Charalambous & Spiros Martzoukos, 2006. "Robust Artificial Neural Networks for Pricing of European Options," Computational Economics, Springer;Society for Computational Economics, vol. 27(2), pages 329-351, May.
    18. Yongxin Yang & Yu Zheng & Timothy M. Hospedales, 2016. "Gated Neural Networks for Option Pricing: Rationality by Design," Papers 1609.07472, arXiv.org, revised Mar 2020.
    19. Gradojevic, Nikola & Gencay, Ramazan, 2008. "Overnight interest rates and aggregate market expectations," Economics Letters, Elsevier, vol. 100(1), pages 27-30, July.
    20. Saffet Akdag & Ömer İskenderoglu & Andrew Adewale Alola, 2020. "The volatility spillover effects among risk appetite indexes: insight from the VIX and the rise," Letters in Spatial and Resource Sciences, Springer, vol. 13(1), pages 49-65, April.
    21. Richard A. Ashley & Kwok Ping Tsang, 2014. "Credible Granger-Causality Inference with Modest Sample Lengths: A Cross-Sample Validation Approach," Econometrics, MDPI, vol. 2(1), pages 1-20, March.
    22. Devi, Sandhya, 2021. "Asymmetric Tsallis distributions for modeling financial market dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:297:y:2021:i:1:d:10.1007_s10479-020-03582-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.