IDEAS home Printed from https://ideas.repec.org/a/eee/dyncon/v33y2009i3p692-709.html
   My bibliography  Save this article

Revealing the implied risk-neutral MGF from options: The wavelet method

Author

Listed:
  • Haven, Emmanuel
  • Liu, Xiaoquan
  • Ma, Chenghu
  • Shen, Liya

Abstract

Options are believed to contain unique information on the risk-neutral moment generating function (MGF) or the risk-neutral probability density function (PDF) of the underlying asset. This paper applies the wavelet method to approximate the implied risk-neutral MGF from option prices. Monte Carlo simulations are carried out to show how the risk-neutral MGF can be obtained using the wavelet method. With the Black-Scholes model as the benchmark, we offer a novel method to reveal the implied MGF, and to price in-sample options and forecast out-of-sample option prices with the estimated MGF.

Suggested Citation

  • Haven, Emmanuel & Liu, Xiaoquan & Ma, Chenghu & Shen, Liya, 2009. "Revealing the implied risk-neutral MGF from options: The wavelet method," Journal of Economic Dynamics and Control, Elsevier, vol. 33(3), pages 692-709, March.
  • Handle: RePEc:eee:dyncon:v:33:y:2009:i:3:p:692-709
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165-1889(08)00163-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ramsey James B. & Lampart Camille, 1998. "The Decomposition of Economic Relationships by Time Scale Using Wavelets: Expenditure and Income," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 3(1), pages 1-22, April.
    2. Bates, David S, 1991. "The Crash of '87: Was It Expected? The Evidence from Options Markets," Journal of Finance, American Finance Association, vol. 46(3), pages 1009-1044, July.
    3. Davidson, Russell & Labys, Walter C & Lesourd, Jean-Baptiste, 1998. "Wavelet Analysis of Commodity Price Behavior," Computational Economics, Springer;Society for Computational Economics, vol. 11(1-2), pages 103-128, April.
    4. Hutchinson, James M & Lo, Andrew W & Poggio, Tomaso, 1994. "A Nonparametric Approach to Pricing and Hedging Derivative Securities via Learning Networks," Journal of Finance, American Finance Association, vol. 49(3), pages 851-889, July.
    5. Esteban-Bravo, Mercedes & Vidal-Sanz, Jose M., 2007. "Computing continuous-time growth models with boundary conditions via wavelets," Journal of Economic Dynamics and Control, Elsevier, vol. 31(11), pages 3614-3643, November.
    6. Darrell Duffie & Jun Pan & Kenneth Singleton, 2000. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
    7. Garcia, Rene & Gencay, Ramazan, 2000. "Pricing and hedging derivative securities with neural networks and a homogeneity hint," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 93-115.
    8. Bliss, Robert R. & Panigirtzoglou, Nikolaos, 2002. "Testing the stability of implied probability density functions," Journal of Banking & Finance, Elsevier, vol. 26(2-3), pages 381-422, March.
    9. Connor Jeff & Rossiter Rosemary, 2005. "Wavelet Transforms and Commodity Prices," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 9(1), pages 1-22, March.
    10. Breeden, Douglas T & Litzenberger, Robert H, 1978. "Prices of State-contingent Claims Implicit in Option Prices," The Journal of Business, University of Chicago Press, vol. 51(4), pages 621-651, October.
    11. Antoniou, Antonios & Vorlow, Constantinos E., 2005. "Price clustering and discreteness: is there chaos behind the noise?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 348(C), pages 389-403.
    12. Yousefi, Shahriar & Weinreich, Ilona & Reinarz, Dominik, 2005. "Wavelet-based prediction of oil prices," Chaos, Solitons & Fractals, Elsevier, vol. 25(2), pages 265-275.
    13. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    14. Ma, Chenghu, 2006. "Intertemporal recursive utility and an equilibrium asset pricing model in the presence of Levy jumps," Journal of Mathematical Economics, Elsevier, vol. 42(2), pages 131-160, April.
    15. Rubinstein, Mark, 1994. "Implied Binomial Trees," Journal of Finance, American Finance Association, vol. 49(3), pages 771-818, July.
    16. Melick, William R. & Thomas, Charles P., 1997. "Recovering an Asset's Implied PDF from Option Prices: An Application to Crude Oil during the Gulf Crisis," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 32(1), pages 91-115, March.
    17. Mark Rubinstein., 1994. "Implied Binomial Trees," Research Program in Finance Working Papers RPF-232, University of California at Berkeley.
    18. Yacine Aït-Sahalia & Andrew W. Lo, 1998. "Nonparametric Estimation of State-Price Densities Implicit in Financial Asset Prices," Journal of Finance, American Finance Association, vol. 53(2), pages 499-547, April.
    19. Bates, David S., 2000. "Post-'87 crash fears in the S&P 500 futures option market," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 181-238.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xixuan Han & Boyu Wei & Hailiang Yang, 2018. "Index Options And Volatility Derivatives In A Gaussian Random Field Risk-Neutral Density Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(04), pages 1-41, June.
    2. Fabozzi, Frank J. & Leccadito, Arturo & Tunaru, Radu S., 2014. "Extracting market information from equity options with exponential Lévy processes," Journal of Economic Dynamics and Control, Elsevier, vol. 38(C), pages 125-141.
    3. Conlon, Thomas & Cotter, John & Gençay, Ramazan, 2018. "Long-run wavelet-based correlation for financial time series," European Journal of Operational Research, Elsevier, vol. 271(2), pages 676-696.
    4. Liu, Xiaoquan & Cao, Yi & Ma, Chenghu & Shen, Liya, 2019. "Wavelet-based option pricing: An empirical study," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1132-1142.
    5. Reza Doostaki & Mohammad Mehdi Hosseini, 2022. "Option Pricing by the Legendre Wavelets Method," Computational Economics, Springer;Society for Computational Economics, vol. 59(2), pages 749-773, February.
    6. Haven, Emmanuel & Liu, Xiaoquan & Shen, Liya, 2012. "De-noising option prices with the wavelet method," European Journal of Operational Research, Elsevier, vol. 222(1), pages 104-112.
    7. Schlögl, Erik, 2013. "Option pricing where the underlying assets follow a Gram/Charlier density of arbitrary order," Journal of Economic Dynamics and Control, Elsevier, vol. 37(3), pages 611-632.
    8. Josep J. Masdemont & Luis Ortiz-Gracia, 2014. "Haar wavelets-based approach for quantifying credit portfolio losses," Quantitative Finance, Taylor & Francis Journals, vol. 14(9), pages 1587-1595, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:wyi:journl:002092 is not listed on IDEAS
    2. repec:wyi:journl:002097 is not listed on IDEAS
    3. Emmanuel Haven & Xiaoquan Liu & Chenghu Ma & Liya Shen, 2013. "Revealing the Implied Risk-neutral MGF with the Wavelet Method," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    4. Liu, Xiaoquan & Cao, Yi & Ma, Chenghu & Shen, Liya, 2019. "Wavelet-based option pricing: An empirical study," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1132-1142.
    5. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    6. Zongwu Cai & Yongmiao Hong, 2013. "Some Recent Developments in Nonparametric Finance," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    7. repec:wyi:journl:002108 is not listed on IDEAS
    8. Arindam Kundu & Sumit Kumar & Nutan Kumar Tomar, 2019. "Option Implied Risk-Neutral Density Estimation: A Robust and Flexible Method," Computational Economics, Springer;Society for Computational Economics, vol. 54(2), pages 705-728, August.
    9. René Garcia & Eric Ghysels & Eric Renault, 2004. "The Econometrics of Option Pricing," CIRANO Working Papers 2004s-04, CIRANO.
    10. Abarca Gustavo & Rangel José Gonzalo & Benavides Guillermo, 2010. "Exchange Rate Market Expectations and Central Bank Policy: The case of the Mexican Peso-US Dollar from 2005-2009," Working Papers 2010-17, Banco de México.
    11. Wan-Ni Lai, 2014. "Comparison of methods to estimate option implied risk-neutral densities," Quantitative Finance, Taylor & Francis Journals, vol. 14(10), pages 1839-1855, October.
    12. Cai, Zongwu & Hong, Yongmiao, 2003. "Nonparametric Methods in Continuous-Time Finance: A Selective Review," SFB 373 Discussion Papers 2003,15, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    13. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    14. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    15. Li, Minqiang, 2008. "Price Deviations of S&P 500 Index Options from the Black-Scholes Formula Follow a Simple Pattern," MPRA Paper 11530, University Library of Munich, Germany.
    16. Alonso, Francisco & Blanco, Roberto & Rubio Irigoyen, Gonzalo, 2005. "Testing the Forecasting Performance of Ibex 35 Option-implied Risk-neutral Densities," DFAEII Working Papers 1988-088X, University of the Basque Country - Department of Foundations of Economic Analysis II.
    17. Coutant, Sophie & Jondeau, Eric & Rockinger, Michael, 2001. "Reading PIBOR futures options smiles: The 1997 snap election," Journal of Banking & Finance, Elsevier, vol. 25(11), pages 1957-1987, November.
    18. Äijö, Janne, 2008. "Impact of US and UK macroeconomic news announcements on the return distribution implied by FTSE-100 index options," International Review of Financial Analysis, Elsevier, vol. 17(2), pages 242-258.
    19. Andreou, Panayiotis C. & Charalambous, Chris & Martzoukos, Spiros H., 2010. "Generalized parameter functions for option pricing," Journal of Banking & Finance, Elsevier, vol. 34(3), pages 633-646, March.
    20. Nikkinen, Jussi, 2003. "Normality tests of option-implied risk-neutral densities: evidence from the small Finnish market," International Review of Financial Analysis, Elsevier, vol. 12(2), pages 99-116.
    21. Marian Micu, 2005. "Extracting expectations from currency option prices: a comparison of methods," Computing in Economics and Finance 2005 226, Society for Computational Economics.
    22. Bondarenko, Oleg, 2003. "Estimation of risk-neutral densities using positive convolution approximation," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 85-112.
    23. Carvalho, Augusto & Guimaraes, Bernardo, 2018. "State-controlled companies and political risk: Evidence from the 2014 Brazilian election," Journal of Public Economics, Elsevier, vol. 159(C), pages 66-78.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:dyncon:v:33:y:2009:i:3:p:692-709. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jedc .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.