IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v296y2021i1d10.1007_s10479-020-03746-x.html
   My bibliography  Save this article

An evaluation of three DoE-guided meta-heuristic-based solution methods for a three-echelon sustainable distribution network

Author

Listed:
  • Sahar Validi

    (University of Huddersfield)

  • Arijit Bhattacharya

    (University of East Anglia)

  • P. J. Byrne

    (Dublin City University)

Abstract

This article evaluates the efficiency of three meta-heuristic optimiser (viz. MOGA-II, MOPSO and NSGA-II)-based solution methods for designing a sustainable three-echelon distribution network. The distribution network employs a bi-objective location-routing model. Due to the mathematically NP-hard nature of the model a multi-disciplinary optimisation commercial platform, modeFRONTIER®, is adopted to utilise the solution methods. The proposed Design of Experiment (DoE)-guided solution methods are of two phased that solve the NP-hard model to attain minimal total costs and total CO2 emission from transportation. Convergence of the optimisers are tested and compared. Ranking of the realistic results are examined using Pareto frontiers and the Technique for Order Preference by Similarity to Ideal Solution approach, followed by determination of the optimal transportation routes. A case of an Irish dairy processing industry’s three-echelon logistics network is considered to validate the solution methods. The results obtained through the proposed methods provide information on open/closed distribution centres (DCs), vehicle routing patterns connecting plants to DCs, open DCs to retailers and retailers to retailers, and number of trucks required in each route to transport the products. It is found that the DoE-guided NSGA-II optimiser based solution is more efficient when compared with the DoE-guided MOGA-II and MOPSO optimiser based solution methods in solving the bi-objective NP-hard three-echelon sustainable model. This efficient solution method enable managers to structure the physical distribution network on the demand side of a logistics network, minimising total cost and total CO2 emission from transportation while satisfying all operational constraints.

Suggested Citation

  • Sahar Validi & Arijit Bhattacharya & P. J. Byrne, 2021. "An evaluation of three DoE-guided meta-heuristic-based solution methods for a three-echelon sustainable distribution network," Annals of Operations Research, Springer, vol. 296(1), pages 421-469, January.
  • Handle: RePEc:spr:annopr:v:296:y:2021:i:1:d:10.1007_s10479-020-03746-x
    DOI: 10.1007/s10479-020-03746-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-020-03746-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-020-03746-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nagy, Gabor & Salhi, Said, 2007. "Location-routing: Issues, models and methods," European Journal of Operational Research, Elsevier, vol. 177(2), pages 649-672, March.
    2. Perl, Jossef & Daskin, Mark S., 1985. "A warehouse location-routing problem," Transportation Research Part B: Methodological, Elsevier, vol. 19(5), pages 381-396, October.
    3. Sahar Validi & Arijit Bhattacharya & P. J. Byrne, 2020. "Sustainable distribution system design: a two-phase DoE-guided meta-heuristic solution approach for a three-echelon bi-objective AHP-integrated location-routing model," Annals of Operations Research, Springer, vol. 290(1), pages 191-222, July.
    4. Karaoglan, Ismail & Altiparmak, Fulya & Kara, Imdat & Dengiz, Berna, 2012. "The location-routing problem with simultaneous pickup and delivery: Formulations and a heuristic approach," Omega, Elsevier, vol. 40(4), pages 465-477.
    5. Daryanto, Yosef & Wee, Hui Ming & Astanti, Ririn Diar, 2019. "Three-echelon supply chain model considering carbon emission and item deterioration," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 368-383.
    6. Eskandarpour, Majid & Dejax, Pierre & Miemczyk, Joe & Péton, Olivier, 2015. "Sustainable supply chain network design: An optimization-oriented review," Omega, Elsevier, vol. 54(C), pages 11-32.
    7. Christian Prins & Caroline Prodhon & Angel Ruiz & Patrick Soriano & Roberto Wolfler Calvo, 2007. "Solving the Capacitated Location-Routing Problem by a Cooperative Lagrangean Relaxation-Granular Tabu Search Heuristic," Transportation Science, INFORMS, vol. 41(4), pages 470-483, November.
    8. ,, 2002. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 18(4), pages 1007-1017, August.
    9. Validi, Sahar & Bhattacharya, Arijit & Byrne, P.J., 2014. "A case analysis of a sustainable food supply chain distribution system—A multi-objective approach," International Journal of Production Economics, Elsevier, vol. 152(C), pages 71-87.
    10. Xiaoge Zhang & Andrew Adamatzky & Felix T. S. Chan & Sankaran Mahadevan & Yong Deng, 2017. "Physarum solver: a bio-inspired method for sustainable supply chain network design problem," Annals of Operations Research, Springer, vol. 254(1), pages 533-552, July.
    11. Marcus Brandenburg & Tobias Rebs, 2015. "Sustainable supply chain management: a modeling perspective," Annals of Operations Research, Springer, vol. 229(1), pages 213-252, June.
    12. ,, 2002. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 18(6), pages 1461-1465, December.
    13. Stenger, Andreas & Schneider, Michael & Schwind, Michael & Vigo, Daniele, 2012. "Location routing for small package shippers with subcontracting options," International Journal of Production Economics, Elsevier, vol. 140(2), pages 702-712.
    14. ,, 2002. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 18(1), pages 193-194, February.
    15. ,, 2002. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 18(5), pages 1273-1289, October.
    16. Varsei, Mohsen & Polyakovskiy, Sergey, 2017. "Sustainable supply chain network design: A case of the wine industry in Australia," Omega, Elsevier, vol. 66(PB), pages 236-247.
    17. Erdoğan, Sevgi & Miller-Hooks, Elise, 2012. "A Green Vehicle Routing Problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 100-114.
    18. Chaabane, A. & Ramudhin, A. & Paquet, M., 2012. "Design of sustainable supply chains under the emission trading scheme," International Journal of Production Economics, Elsevier, vol. 135(1), pages 37-49.
    19. Bruce L. Golden & Christopher C. Skiscim, 1986. "Using simulated annealing to solve routing and location problems," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 33(2), pages 261-279, May.
    20. ,, 2002. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 18(3), pages 819-821, June.
    21. Nguyen, Viet-Phuong & Prins, Christian & Prodhon, Caroline, 2012. "Solving the two-echelon location routing problem by a GRASP reinforced by a learning process and path relinking," European Journal of Operational Research, Elsevier, vol. 216(1), pages 113-126.
    22. ,, 2002. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 18(2), pages 541-545, April.
    23. Thomas L. Saaty, 1994. "How to Make a Decision: The Analytic Hierarchy Process," Interfaces, INFORMS, vol. 24(6), pages 19-43, December.
    24. Stenger, A. & Schneider, M. & Schwind, M. & Vigo, D., 2012. "Location Routing for Small Package Shippers with Subcontracting Options," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 62387, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    25. Ting, Ching-Jung & Chen, Chia-Ho, 2013. "A multiple ant colony optimization algorithm for the capacitated location routing problem," International Journal of Production Economics, Elsevier, vol. 141(1), pages 34-44.
    26. Tuzun, Dilek & Burke, Laura I., 1999. "A two-phase tabu search approach to the location routing problem," European Journal of Operational Research, Elsevier, vol. 116(1), pages 87-99, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M. Tadaros & A. Migdalas, 2022. "Bi- and multi-objective location routing problems: classification and literature review," Operational Research, Springer, vol. 22(5), pages 4641-4683, November.
    2. Erfan Babaee Tirkolaee & Alireza Goli & Abbas Mardani, 2023. "A novel two-echelon hierarchical location-allocation-routing optimization for green energy-efficient logistics systems," Annals of Operations Research, Springer, vol. 324(1), pages 795-823, May.
    3. Niu, Yi-Feng & Zhao, Xia & Xu, Xiu-Zhen & Zhang, Shi-Yun, 2023. "Reliability assessment of a stochastic-flow distribution network with carbon emission constraint," Reliability Engineering and System Safety, Elsevier, vol. 230(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sahar Validi & Arijit Bhattacharya & P. J. Byrne, 2020. "Sustainable distribution system design: a two-phase DoE-guided meta-heuristic solution approach for a three-echelon bi-objective AHP-integrated location-routing model," Annals of Operations Research, Springer, vol. 290(1), pages 191-222, July.
    2. Drexl, Michael & Schneider, Michael, 2015. "A survey of variants and extensions of the location-routing problem," European Journal of Operational Research, Elsevier, vol. 241(2), pages 283-308.
    3. Nasrin Asgari & Mohsen Rajabi & Masoumeh Jamshidi & Maryam Khatami & Reza Zanjirani Farahani, 2017. "A memetic algorithm for a multi-objective obnoxious waste location-routing problem: a case study," Annals of Operations Research, Springer, vol. 250(2), pages 279-308, March.
    4. Mahdi Bashiri & Zeinab Rasoulinejad & Ehsan Fallahzade, 2016. "A new approach on auxiliary vehicle assignment in capacitated location routing problem," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(4), pages 886-902, March.
    5. Rieck, Julia & Ehrenberg, Carsten & Zimmermann, Jürgen, 2014. "Many-to-many location-routing with inter-hub transport and multi-commodity pickup-and-delivery," European Journal of Operational Research, Elsevier, vol. 236(3), pages 863-878.
    6. Drexl, M. & Schneider, M., 2014. "A Survey of the Standard Location-Routing Problem," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 65940, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    7. Michael Schneider & Michael Drexl, 2017. "A survey of the standard location-routing problem," Annals of Operations Research, Springer, vol. 259(1), pages 389-414, December.
    8. Günther Zäpfel & Michael Bögl, 2016. "An adaptive structure of a hub-and-spoke system with direct and depot shipments in the case of volatile demand over time," Journal of Business Economics, Springer, vol. 86(7), pages 697-721, October.
    9. Weijun Xie & Yanfeng Ouyang & Sze Chun Wong, 2016. "Reliable Location-Routing Design Under Probabilistic Facility Disruptions," Transportation Science, INFORMS, vol. 50(3), pages 1128-1138, August.
    10. Roberto Baldacci & Aristide Mingozzi & Roberto Wolfler Calvo, 2011. "An Exact Method for the Capacitated Location-Routing Problem," Operations Research, INFORMS, vol. 59(5), pages 1284-1296, October.
    11. Karaoglan, Ismail & Altiparmak, Fulya & Kara, Imdat & Dengiz, Berna, 2012. "The location-routing problem with simultaneous pickup and delivery: Formulations and a heuristic approach," Omega, Elsevier, vol. 40(4), pages 465-477.
    12. Stenger, Andreas & Schneider, Michael & Schwind, Michael & Vigo, Daniele, 2012. "Location routing for small package shippers with subcontracting options," International Journal of Production Economics, Elsevier, vol. 140(2), pages 702-712.
    13. Zhang, Ying & Qi, Mingyao & Lin, Wei-Hua & Miao, Lixin, 2015. "A metaheuristic approach to the reliable location routing problem under disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 83(C), pages 90-110.
    14. Claudio Contardo & Jean-François Cordeau & Bernard Gendron, 2014. "An Exact Algorithm Based on Cut-and-Column Generation for the Capacitated Location-Routing Problem," INFORMS Journal on Computing, INFORMS, vol. 26(1), pages 88-102, February.
    15. Karaoglan, Ismail & Altiparmak, Fulya & Kara, Imdat & Dengiz, Berna, 2011. "A branch and cut algorithm for the location-routing problem with simultaneous pickup and delivery," European Journal of Operational Research, Elsevier, vol. 211(2), pages 318-332, June.
    16. Hunkar Toyoglu & Oya Karasan & Bahar Kara, 2012. "A New Formulation Approach for Location-Routing Problems," Networks and Spatial Economics, Springer, vol. 12(4), pages 635-659, December.
    17. Nagy, Gabor & Salhi, Said, 2007. "Location-routing: Issues, models and methods," European Journal of Operational Research, Elsevier, vol. 177(2), pages 649-672, March.
    18. Prodhon, Caroline & Prins, Christian, 2014. "A survey of recent research on location-routing problems," European Journal of Operational Research, Elsevier, vol. 238(1), pages 1-17.
    19. Pourya Pourhejazy & Oh Kyoung Kwon, 2016. "The New Generation of Operations Research Methods in Supply Chain Optimization: A Review," Sustainability, MDPI, vol. 8(10), pages 1-23, October.
    20. Ting, Ching-Jung & Chen, Chia-Ho, 2013. "A multiple ant colony optimization algorithm for the capacitated location routing problem," International Journal of Production Economics, Elsevier, vol. 141(1), pages 34-44.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:296:y:2021:i:1:d:10.1007_s10479-020-03746-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.