IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v288y2020i1d10.1007_s10479-019-03486-7.html
   My bibliography  Save this article

A compromise programming approach for target setting in DEA

Author

Listed:
  • Sebastián Lozano

    (University of Seville)

  • Narges Soltani

    (York University)

  • Akram Dehnokhalaji

    (Aston University)

Abstract

This paper presents a new data envelopment analysis (DEA) target setting approach that uses the compromise programming (CP) method of multiobjective optimization. This method computes the ideal point associated to each decision making unit (DMU) and determines an ambitious, efficient target that is as close as possible (using an lp metric) to that ideal point. The specific cases p = 1, p = 2 and p = ∞ are separately discussed and analyzed. In particular, for p = 1 and p = ∞, a lexicographic optimization approach is proposed in order to guarantee uniqueness of the obtained target. The original CP method is translation invariant and has been adapted so that the proposed CP-DEA is also units invariant. An lp metric-based efficiency score is also defined for each DMU. The proposed CP-DEA approach can also be utilized in the presence of preference information, non-discretionary or integer variables and undesirable outputs. The proposed approach has been extensively compared with other DEA approaches on a dataset from the literature.

Suggested Citation

  • Sebastián Lozano & Narges Soltani & Akram Dehnokhalaji, 2020. "A compromise programming approach for target setting in DEA," Annals of Operations Research, Springer, vol. 288(1), pages 363-390, May.
  • Handle: RePEc:spr:annopr:v:288:y:2020:i:1:d:10.1007_s10479-019-03486-7
    DOI: 10.1007/s10479-019-03486-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-019-03486-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-019-03486-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nasim Nasrabadi & Akram Dehnokhalaji & Pekka Korhonen & Jyrki Wallenius, 2019. "A stepwise benchmarking approach to DEA with interval scale data," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(6), pages 954-961, June.
    2. Timo Kuosmanen, 2005. "Weak Disposability in Nonparametric Production Analysis with Undesirable Outputs," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 87(4), pages 1077-1082.
    3. Jesus T. Pastor & Juan Aparicio & Javier Alcaraz & Fernando Vidal & Diego Pastor, 2016. "The Reverse Directional Distance Function," International Series in Operations Research & Management Science, in: Juan Aparicio & C. A. Knox Lovell & Jesus T. Pastor (ed.), Advances in Efficiency and Productivity, chapter 0, pages 15-57, Springer.
    4. William Cooper & Kyung Park & Jesus Pastor, 1999. "RAM: A Range Adjusted Measure of Inefficiency for Use with Additive Models, and Relations to Other Models and Measures in DEA," Journal of Productivity Analysis, Springer, vol. 11(1), pages 5-42, February.
    5. Roll, Y & Golany, B., 1993. "Alternate methods of treating factor weights in DEA," Omega, Elsevier, vol. 21(1), pages 99-109, January.
    6. Krüger, Jens & Hampf, Benjamin, 2015. "Optimal Directions for Directional Distance Functions: An Exploration of Potential Reductions of Greenhouse Gases," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 77007, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    7. Tavana, Madjid & Ebrahimnejad, Ali & Santos-Arteaga, Francisco J. & Mansourzadeh, Seyed Mehdi & Matin, Reza Kazemi, 2018. "A hybrid DEA-MOLP model for public school assessment and closure decision in the City of Philadelphia," Socio-Economic Planning Sciences, Elsevier, vol. 61(C), pages 70-89.
    8. Ke Wang & Yujiao Xian & Chia-Yen Lee & Yi-Ming Wei & Zhimin Huang, 2019. "On selecting directions for directional distance functions in a non-parametric framework: a review," Annals of Operations Research, Springer, vol. 278(1), pages 43-76, July.
    9. Lozano, Sebastián & Calzada-Infante, Laura, 2018. "Computing gradient-based stepwise benchmarking paths," Omega, Elsevier, vol. 81(C), pages 195-207.
    10. Korhonen, Pekka J. & Dehnokhalaji, Akram & Nasrabadi, Nasim, 2018. "A lexicographic radial projection onto the efficient frontier in Data Envelopment Analysis," European Journal of Operational Research, Elsevier, vol. 265(3), pages 1005-1012.
    11. Juan Aparicio & C. A. Knox Lovell & Jesus T. Pastor (ed.), 2016. "Advances in Efficiency and Productivity," International Series in Operations Research and Management Science, Springer, number 978-3-319-48461-7, September.
    12. Benjamin Hampf & Jens J. Krüger, 2015. "Optimal Directions for Directional Distance Functions: An Exploration of Potential Reductions of Greenhouse Gases," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 97(3), pages 920-938.
    13. R. Färe & S. Grosskopf & G. Whittaker, 2013. "Directional output distance functions: endogenous directions based on exogenous normalization constraints," Journal of Productivity Analysis, Springer, vol. 40(3), pages 267-269, December.
    14. Thomson, William, 1994. "Cooperative models of bargaining," Handbook of Game Theory with Economic Applications, in: R.J. Aumann & S. Hart (ed.), Handbook of Game Theory with Economic Applications, edition 1, volume 2, chapter 35, pages 1237-1284, Elsevier.
    15. Fukuyama, Hirofumi & Weber, William L., 2009. "A directional slacks-based measure of technical inefficiency," Socio-Economic Planning Sciences, Elsevier, vol. 43(4), pages 274-287, December.
    16. Y-W Chen & M Larbani & Y-P Chang, 2009. "Multiobjective data envelopment analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(11), pages 1556-1566, November.
    17. HATAMI-MARBINI, Adel & TAVANA, Madjid & SAATI, Saber & AGRELL, Per J., 2013. "Allocating fixed resources and setting targets using a common-weights DEA approach," LIDAM Reprints CORE 2474, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    18. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    19. Aparicio, Juan & Cordero, Jose M. & Pastor, Jesus T., 2017. "The determination of the least distance to the strongly efficient frontier in Data Envelopment Analysis oriented models: Modelling and computational aspects," Omega, Elsevier, vol. 71(C), pages 1-10.
    20. Asmild, Mette & Pastor, Jesús T., 2010. "Slack free MEA and RDM with comprehensive efficiency measures," Omega, Elsevier, vol. 38(6), pages 475-483, December.
    21. P. L. Yu, 1973. "A Class of Solutions for Group Decision Problems," Management Science, INFORMS, vol. 19(8), pages 936-946, April.
    22. C Kao & H-T Hung, 2005. "Data envelopment analysis with common weights: the compromise solution approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(10), pages 1196-1203, October.
    23. Akram Dehnokhalaji & Narges Soltani, 2019. "Gradual efficiency improvement through a sequence of targets," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(12), pages 2143-2152, December.
    24. Cook, Wade D. & Zhu, Joe, 2007. "Within-group common weights in DEA: An analysis of power plant efficiency," European Journal of Operational Research, Elsevier, vol. 178(1), pages 207-216, April.
    25. Juan Aparicio & José Ruiz & Inmaculada Sirvent, 2007. "Closest targets and minimum distance to the Pareto-efficient frontier in DEA," Journal of Productivity Analysis, Springer, vol. 28(3), pages 209-218, December.
    26. A. Davoodi & H. Rezai, 2012. "Common set of weights in data envelopment analysis: a linear programming problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(2), pages 355-365, June.
    27. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    28. Rajiv D. Banker & Richard C. Morey, 1986. "Efficiency Analysis for Exogenously Fixed Inputs and Outputs," Operations Research, INFORMS, vol. 34(4), pages 513-521, August.
    29. D K Despotis, 2002. "Improving the discriminating power of DEA: focus on globally efficient units," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(3), pages 314-323, March.
    30. M Zohrehbandian & A Makui & A Alinezhad, 2010. "A compromise solution approach for finding common weights in DEA: an improvement to Kao and Hung's approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(4), pages 604-610, April.
    31. M. Freimer & P. L. Yu, 1976. "Some New Results on Compromise Solutions for Group Decision Problems," Management Science, INFORMS, vol. 22(6), pages 688-693, February.
    32. Lee, Chia-Yen, 2018. "Mixed-strategy Nash equilibrium in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 266(3), pages 1013-1024.
    33. Sebastián Lozano & Gabriel Villa, 2010. "Gradual technical and scale efficiency improvement in DEA," Annals of Operations Research, Springer, vol. 173(1), pages 123-136, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dafydd Mali & Hyoung-Joo Lim, 2022. "Does relative (absolute) efficiency affect capital costs?," Annals of Operations Research, Springer, vol. 315(2), pages 1037-1060, August.
    2. Sebastián Lozano & Gabriel Villa, 2023. "Multiobjective centralized DEA approach to Tokyo 2020 Olympic Games," Annals of Operations Research, Springer, vol. 322(2), pages 879-919, March.
    3. An, Qingxian & Zhang, Qiaoyu & Tao, Xiangyang, 2023. "Pay-for-performance incentives in benchmarking with quasi S-shaped technology," Omega, Elsevier, vol. 118(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sebastián Lozano & Narges Soltani, 2020. "A modified discrete Raiffa approach for efficiency assessment and target setting," Annals of Operations Research, Springer, vol. 292(1), pages 71-95, September.
    2. Sebastián Lozano & Narges Soltani, 2018. "DEA target setting using lexicographic and endogenous directional distance function approaches," Journal of Productivity Analysis, Springer, vol. 50(1), pages 55-70, October.
    3. Lozano, Sebastián & Khezri, Somayeh, 2021. "Network DEA smallest improvement approach," Omega, Elsevier, vol. 98(C).
    4. Ji, Zhiyong & Wu, Xianhua & Chen, Xueli & Zhou, Wenzhuo & Song, Malin, 2023. "Finding green performance targets globally closest to management goals for ports experiencing similar circumstances," Resources Policy, Elsevier, vol. 85(PB).
    5. Fangqing Wei & Junfei Chu & Jiayun Song & Feng Yang, 2019. "A cross-bargaining game approach for direction selection in the directional distance function," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(3), pages 787-807, September.
    6. Lozano, S. & Hinojosa, M.A. & Mármol, A.M., 2019. "Extending the bargaining approach to DEA target setting," Omega, Elsevier, vol. 85(C), pages 94-102.
    7. Ester Gutiérrez & Sebastián Lozano, 2020. "Benchmarking Formula One auto racing circuits: a two stage DEA approach," Operational Research, Springer, vol. 20(4), pages 2059-2083, December.
    8. Juan Aparicio & Magdalena Kapelko & Bernhard Mahlberg & Jose L. Sainz-Pardo, 2017. "Measuring input-specific productivity change based on the principle of least action," Journal of Productivity Analysis, Springer, vol. 47(1), pages 17-31, February.
    9. Adler, Nicole & Volta, Nicola, 2016. "Accounting for externalities and disposability: A directional economic environmental distance function," European Journal of Operational Research, Elsevier, vol. 250(1), pages 314-327.
    10. Shih-Heng Yu, 2019. "Benchmarking and Performance Evaluation Towards the Sustainable Development of Regions in Taiwan: A Minimum Distance-Based Measure with Undesirable Outputs in Additive DEA," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 144(3), pages 1323-1348, August.
    11. Mai, Nhat Chi, 2015. "Efficiency of the banking system in Vietnam under financial liberalization," OSF Preprints qsf6d, Center for Open Science.
    12. Afsharian, Mohsen & Ahn, Heinz & Harms, Sören Guntram, 2021. "A review of DEA approaches applying a common set of weights: The perspective of centralized management," European Journal of Operational Research, Elsevier, vol. 294(1), pages 3-15.
    13. Monge, Juan F. & Ruiz, José L., 2023. "Setting closer targets based on non-dominated convex combinations of Pareto-efficient units: A bi-level linear programming approach in Data Envelopment Analysis," European Journal of Operational Research, Elsevier, vol. 311(3), pages 1084-1096.
    14. An, Qingxian & Zhang, Qiaoyu & Tao, Xiangyang, 2023. "Pay-for-performance incentives in benchmarking with quasi S-shaped technology," Omega, Elsevier, vol. 118(C).
    15. Tianqun Xu & Ping Gao & Qian Yu & Debin Fang, 2017. "An Improved Eco-Efficiency Analysis Framework Based on Slacks-Based Measure Method," Sustainability, MDPI, vol. 9(6), pages 1-21, June.
    16. Kao, Chiang, 2022. "Closest targets in the slacks-based measure of efficiency for production units with multi-period data," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1042-1054.
    17. Fukuyama, Hirofumi & Matousek, Roman & Tzeremes, Nickolaos G., 2022. "Bank production with nonperforming loans: A minimum distance directional slack inefficiency approach," Omega, Elsevier, vol. 113(C).
    18. Ke Wang & Yujiao Xian & Chia-Yen Lee & Yi-Ming Wei & Zhimin Huang, 2019. "On selecting directions for directional distance functions in a non-parametric framework: a review," Annals of Operations Research, Springer, vol. 278(1), pages 43-76, July.
    19. Lee, Chia-Yen, 2014. "Meta-data envelopment analysis: Finding a direction towards marginal profit maximization," European Journal of Operational Research, Elsevier, vol. 237(1), pages 207-216.
    20. Marianela Carrillo & Jesús M. Jorge, 2017. "DEA-Like Efficiency Ranking of Regional Health Systems in Spain," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 133(3), pages 1133-1149, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:288:y:2020:i:1:d:10.1007_s10479-019-03486-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.