IDEAS home Printed from https://ideas.repec.org/a/kap/jproda/v47y2017i1d10.1007_s11123-016-0488-9.html
   My bibliography  Save this article

Measuring input-specific productivity change based on the principle of least action

Author

Listed:
  • Juan Aparicio

    (University Miguel Hernandez)

  • Magdalena Kapelko

    (Wroclaw University of Economics)

  • Bernhard Mahlberg

    (Institute for Industrial Research
    Vienna University of Economics and Business)

  • Jose L. Sainz-Pardo

    (University Miguel Hernandez)

Abstract

In for-profit organizations, efficiency and productivity measurement with reference to the potential for input-specific reductions is particularly important and has been the focus of interest in the recent literature. Different approaches can be formulated to measure and decompose input-specific productivity change over time. In this paper, we highlight some problems within existing approaches and propose a new methodology based on the Principle of Least Action. In particular, this model is operationalized in the form of a non-radial Luenberger productivity indicator based on the determination of the least distance to the strongly efficient frontier of the considered production possibility sets, which are estimated by non-parametric techniques based upon Data Envelopment Analysis. In our approach, overall productivity change is the sum of input-specific productivity changes. Overall productivity change and input-specific changes are broken up into indicators of efficiency change and technical change. This decomposition enables the researcher to quantify the contributions of each production factor to productivity change and its components. In this way, the drivers of productivity development are revealed. For illustration purposes the new approach is applied to a recent dataset of Polish dairy processing firms.

Suggested Citation

  • Juan Aparicio & Magdalena Kapelko & Bernhard Mahlberg & Jose L. Sainz-Pardo, 2017. "Measuring input-specific productivity change based on the principle of least action," Journal of Productivity Analysis, Springer, vol. 47(1), pages 17-31, February.
  • Handle: RePEc:kap:jproda:v:47:y:2017:i:1:d:10.1007_s11123-016-0488-9
    DOI: 10.1007/s11123-016-0488-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11123-016-0488-9
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11123-016-0488-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tarja Joro & Pekka Korhonen & Jyrki Wallenius, 1998. "Structural Comparison of Data Envelopment Analysis and Multiple Objective Linear Programming," Management Science, INFORMS, vol. 44(7), pages 962-970, July.
    2. Mahlberg, Bernhard & Luptacik, Mikulas & Sahoo, Biresh K., 2011. "Examining the drivers of total factor productivity change with an illustrative example of 14 EU countries," Ecological Economics, Elsevier, vol. 72(C), pages 60-69.
    3. Rafat Soboh & Alfons Oude Lansink & Gert Van Dijk, 2012. "Efficiency of Cooperatives and Investor Owned Firms Revisited," Journal of Agricultural Economics, Wiley Blackwell, vol. 63(1), pages 142-157, February.
    4. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    5. Aparicio, Juan & Cordero, Jose M. & Pastor, Jesus T., 2017. "The determination of the least distance to the strongly efficient frontier in Data Envelopment Analysis oriented models: Modelling and computational aspects," Omega, Elsevier, vol. 71(C), pages 1-10.
    6. Unknown, 2008. "Institute of Agricultural Economics," Economics of Agriculture, Institute of Agricultural Economics, vol. 55(3).
    7. Walter Briec & K. Kerstens, 2009. "Infeasibilities and directional distance functions: with application to the determinateness of the luenberger productivity indicator," Post-Print hal-00372560, HAL.
    8. Fukuyama, Hirofumi & Weber, William L., 2009. "A directional slacks-based measure of technical inefficiency," Socio-Economic Planning Sciences, Elsevier, vol. 43(4), pages 274-287, December.
    9. Hirofumi Fukuyama & Hiroya Masaki & Kazuyuki Sekitani & Jianming Shi, 2014. "Distance optimization approach to ratio-form efficiency measures in data envelopment analysis," Journal of Productivity Analysis, Springer, vol. 42(2), pages 175-186, October.
    10. Cazals, Catherine & Florens, Jean-Pierre & Simar, Leopold, 2002. "Nonparametric frontier estimation: a robust approach," Journal of Econometrics, Elsevier, vol. 106(1), pages 1-25, January.
    11. W. Briec & K. Kerstens, 2009. "Infeasibility and Directional Distance Functions with Application to the Determinateness of the Luenberger Productivity Indicator," Journal of Optimization Theory and Applications, Springer, vol. 141(1), pages 55-73, April.
    12. Magdalena Kapelko & Alfons Oude Lansink & Spiro E Stefanou, 2015. "Effect of Food Regulation on the Spanish Food Processing Industry: A Dynamic Productivity Analysis," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-16, June.
    13. Alfons Oude Lansink & Christien Ondersteijn, 2006. "Energy Productivity Growth in the Dutch Greenhouse Industry," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 88(1), pages 124-132.
    14. Mahlberg, Bernhard & Luptacik, Mikulas, 2014. "Eco-efficiency and eco-productivity change over time in a multisectoral economic system," European Journal of Operational Research, Elsevier, vol. 234(3), pages 885-897.
    15. Juan Aparicio & José Ruiz & Inmaculada Sirvent, 2007. "Closest targets and minimum distance to the Pareto-efficient frontier in DEA," Journal of Productivity Analysis, Springer, vol. 28(3), pages 209-218, December.
    16. Mroczek, Robert & Drożdż, Jadwiga & Tereszczuk, Mirosława & Urban, Roman, 2014. "Polish food industry 2008-2013," Multiannual Program Reports 206063, Institute of Agricultural and Food Economics - National Research Institute (IAFE-NRI).
    17. Pastor, J. T. & Ruiz, J. L. & Sirvent, I., 1999. "An enhanced DEA Russell graph efficiency measure," European Journal of Operational Research, Elsevier, vol. 115(3), pages 596-607, June.
    18. R. G. Chambers & Y. Chung & R. Färe, 1998. "Profit, Directional Distance Functions, and Nerlovian Efficiency," Journal of Optimization Theory and Applications, Springer, vol. 98(2), pages 351-364, August.
    19. Chambers, Robert G. & Fare, Rolf & Grosskopf, Shawna, 1996. "Productivity Growth in APEC Countries," Working Papers 197843, University of Maryland, Department of Agricultural and Resource Economics.
    20. Theodoros Skevas & Alfons Oude Lansink, 2014. "Reducing Pesticide Use and Pesticide Impact by Productivity Growth: the Case of Dutch Arable Farming," Journal of Agricultural Economics, Wiley Blackwell, vol. 65(1), pages 191-211, January.
    21. Gonzalez, Eduardo & Alvarez, Antonio, 2001. "From efficiency measurement to efficiency improvement: The choice of a relevant benchmark," European Journal of Operational Research, Elsevier, vol. 133(3), pages 512-520, September.
    22. Kapelko, M. & Horta, I.M. & Camanho, A.S. & Oude Lansink, A., 2015. "Measurement of input-specific productivity growth with an application to the construction industry in Spain and Portugal," International Journal of Production Economics, Elsevier, vol. 166(C), pages 64-71.
    23. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    24. Aparicio, Juan & Mahlberg, Bernhard & Pastor, Jesus T. & Sahoo, Biresh K., 2014. "Decomposing technical inefficiency using the principle of least action," European Journal of Operational Research, Elsevier, vol. 239(3), pages 776-785.
    25. Magdalena Kapelko & Alfons Oude Lansink & Spiro E. Stefanou, 2016. "Investment Age and Dynamic Productivity Growth in the Spanish Food Processing Industry," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 98(3), pages 946-961.
    26. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    27. Fukuyama, Hirofumi & Maeda, Yasunobu & Sekitani, Kazuyuki & Shi, Jianming, 2014. "Input–output substitutability and strongly monotonic p-norm least distance DEA measures," European Journal of Operational Research, Elsevier, vol. 237(3), pages 997-1007.
    28. Alfons Lansink & Elvira Silva, 2003. "CO 2 and Energy Efficiency of Different Heating Technologies in the Dutch Glasshouse Industry," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 24(4), pages 395-407, April.
    29. Pastor, Jesús T. & Aparicio, Juan, 2010. "A note on "A directional slacks-based measure of technical inefficiency"," Socio-Economic Planning Sciences, Elsevier, vol. 44(3), pages 174-175, September.
    30. William Cooper & Kyung Park & Jesus Pastor, 1999. "RAM: A Range Adjusted Measure of Inefficiency for Use with Additive Models, and Relations to Other Models and Measures in DEA," Journal of Productivity Analysis, Springer, vol. 11(1), pages 5-42, February.
    31. Maria Silva Portela & Pedro Borges & Emmanuel Thanassoulis, 2003. "Finding Closest Targets in Non-Oriented DEA Models: The Case of Convex and Non-Convex Technologies," Journal of Productivity Analysis, Springer, vol. 19(2), pages 251-269, April.
    32. Léopold Simar, 2003. "Detecting Outliers in Frontier Models: A Simple Approach," Journal of Productivity Analysis, Springer, vol. 20(3), pages 391-424, November.
    33. Chang, Tzu-Pu & Hu, Jin-Li & Chou, Ray Yeutien & Sun, Lei, 2012. "The sources of bank productivity growth in China during 2002–2009: A disaggregation view," Journal of Banking & Finance, Elsevier, vol. 36(7), pages 1997-2006.
    34. Wrzesińska-Kowal, Joanna & Drabarczyk, Katarzyna, 2014. "Food production in Poland, compared to selected European Union Member States," Problems of World Agriculture / Problemy Rolnictwa Światowego, Warsaw University of Life Sciences, vol. 14(29), pages 1-10, December.
    35. Leopold Simar & Valentin Zelenyuk, 2006. "On Testing Equality of Distributions of Technical Efficiency Scores," Econometric Reviews, Taylor & Francis Journals, vol. 25(4), pages 497-522.
    36. W. Erwin Diewert & Kevin J. Fox, 2018. "A decomposition of US business sector TFP growth into technical progress and cost efficiency components," Journal of Productivity Analysis, Springer, vol. 50(1), pages 71-84, October.
    37. Mikulas Luptacik & Bernhard Mahlberg, 2016. "Productivity change in a multisectoral economic system," Economic Systems Research, Taylor & Francis Journals, vol. 28(3), pages 344-361, September.
    38. Mahlberg, Bernhard & Sahoo, Biresh K., 2011. "Radial and non-radial decompositions of Luenberger productivity indicator with an illustrative application," International Journal of Production Economics, Elsevier, vol. 131(2), pages 721-726, June.
    39. Aparicio, Juan & Pastor, Jesus T., 2014. "Closest targets and strong monotonicity on the strongly efficient frontier in DEA," Omega, Elsevier, vol. 44(C), pages 51-57.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Javad Vakili & Hanieh Amirmoshiri & Rashed Khanjani Shiraz & Hirofumi Fukuyama, 2020. "A modified distance friction minimization approach in data envelopment analysis," Annals of Operations Research, Springer, vol. 288(2), pages 789-804, May.
    2. Magdalena Kapelko & Alfons Oude Lansink & Spiro E. Stefanou, 2017. "Input-Specific Dynamic Productivity Change: Measurement and Application to European Dairy Manufacturing Firms," Journal of Agricultural Economics, Wiley Blackwell, vol. 68(2), pages 579-599, June.
    3. Somayeh Razipour-GhalehJough & Farhad Hosseinzadeh Lotfi & Gholamreza Jahanshahloo & Mohsen Rostamy-malkhalifeh & Hamid Sharafi, 2020. "Finding closest target for bank branches in the presence of weight restrictions using data envelopment analysis," Annals of Operations Research, Springer, vol. 288(2), pages 755-787, May.
    4. Zhu, Qingyuan & Wu, Jie & Ji, Xiang & Li, Feng, 2018. "A simple MILP to determine closest targets in non-oriented DEA model satisfying strong monotonicity," Omega, Elsevier, vol. 79(C), pages 1-8.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aparicio, Juan & Garcia-Nove, Eva M. & Kapelko, Magdalena & Pastor, Jesus T., 2017. "Graph productivity change measure using the least distance to the pareto-efficient frontier in data envelopment analysis," Omega, Elsevier, vol. 72(C), pages 1-14.
    2. Magdalena Kapelko & Alfons Oude Lansink & Spiro E. Stefanou, 2017. "Input-Specific Dynamic Productivity Change: Measurement and Application to European Dairy Manufacturing Firms," Journal of Agricultural Economics, Wiley Blackwell, vol. 68(2), pages 579-599, June.
    3. Kao, Chiang, 2022. "Closest targets in the slacks-based measure of efficiency for production units with multi-period data," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1042-1054.
    4. Juan Aparicio & Magdalena Kapelko & Juan F. Monge, 2020. "A Well-Defined Composite Indicator: An Application to Corporate Social Responsibility," Journal of Optimization Theory and Applications, Springer, vol. 186(1), pages 299-323, July.
    5. Aparicio, Juan & Cordero, Jose M. & Gonzalez, Martin & Lopez-Espin, Jose J., 2018. "Using non-radial DEA to assess school efficiency in a cross-country perspective: An empirical analysis of OECD countries," Omega, Elsevier, vol. 79(C), pages 9-20.
    6. Alcaraz, Javier & Anton-Sanchez, Laura & Aparicio, Juan & Monge, Juan F. & Ramón, Nuria, 2021. "Russell Graph efficiency measures in Data Envelopment Analysis: The multiplicative approach," European Journal of Operational Research, Elsevier, vol. 292(2), pages 663-674.
    7. Magdalena Kapelko, 2018. "Measuring inefficiency for specific inputs using data envelopment analysis: evidence from construction industry in Spain and Portugal," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(1), pages 43-66, March.
    8. Juan Aparicio & Jesus T. Pastor & Jose L. Sainz-Pardo & Fernando Vidal, 2020. "Estimating and decomposing overall inefficiency by determining the least distance to the strongly efficient frontier in data envelopment analysis," Operational Research, Springer, vol. 20(2), pages 747-770, June.
    9. Aparicio, Juan & Cordero, Jose M. & Pastor, Jesus T., 2017. "The determination of the least distance to the strongly efficient frontier in Data Envelopment Analysis oriented models: Modelling and computational aspects," Omega, Elsevier, vol. 71(C), pages 1-10.
    10. Jradi, Samah & Bouzdine Chameeva, Tatiana & Aparicio, Juan, 2019. "The measurement of revenue inefficiency over time: An additive perspective," Omega, Elsevier, vol. 83(C), pages 167-180.
    11. Zhu, Qingyuan & Wu, Jie & Ji, Xiang & Li, Feng, 2018. "A simple MILP to determine closest targets in non-oriented DEA model satisfying strong monotonicity," Omega, Elsevier, vol. 79(C), pages 1-8.
    12. Picazo-Tadeo, Andrés J. & Castillo-Giménez, Juana & Beltrán-Esteve, Mercedes, 2014. "An intertemporal approach to measuring environmental performance with directional distance functions: Greenhouse gas emissions in the European Union," Ecological Economics, Elsevier, vol. 100(C), pages 173-182.
    13. Aparicio, Juan & Kapelko, Magdalena, 2019. "Accounting for slacks to measure dynamic inefficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 278(2), pages 463-471.
    14. Aparicio, Juan & Pastor, Jesus T., 2014. "Closest targets and strong monotonicity on the strongly efficient frontier in DEA," Omega, Elsevier, vol. 44(C), pages 51-57.
    15. Juo, Jia-Ching & Fu, Tsu-Tan & Yu, Ming-Miin & Lin, Yu-Hui, 2016. "Non-radial profit performance: An application to Taiwanese banks," Omega, Elsevier, vol. 65(C), pages 111-121.
    16. Beltrán-Esteve, Mercedes & Picazo-Tadeo, Andrés J., 2017. "Assessing environmental performance in the European Union: Eco-innovation versus catching-up," Energy Policy, Elsevier, vol. 104(C), pages 240-252.
    17. Hirofumi Fukuyama & Hiroya Masaki & Kazuyuki Sekitani & Jianming Shi, 2014. "Distance optimization approach to ratio-form efficiency measures in data envelopment analysis," Journal of Productivity Analysis, Springer, vol. 42(2), pages 175-186, October.
    18. Juan Aparicio & Fernando Borras & Lidia Ortiz & Jesus T. Pastor & Fernando Vidal, 2019. "Luenberger-type indicators based on the weighted additive distance function," Annals of Operations Research, Springer, vol. 278(1), pages 195-213, July.
    19. Mette Asmild & Tomas Baležentis & Jens Leth Hougaard, 2016. "Multi-directional productivity change: MEA-Malmquist," Journal of Productivity Analysis, Springer, vol. 46(2), pages 109-119, December.
    20. Zhu, Qingyuan & Aparicio, Juan & Li, Feng & Wu, Jie & Kou, Gang, 2022. "Determining closest targets on the extended facet production possibility set in data envelopment analysis: Modeling and computational aspects," European Journal of Operational Research, Elsevier, vol. 296(3), pages 927-939.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:jproda:v:47:y:2017:i:1:d:10.1007_s11123-016-0488-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.