IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v259y2017i1d10.1007_s10479-017-2520-5.html
   My bibliography  Save this article

An ILP-based local search procedure for the VRP with pickups and deliveries

Author

Listed:
  • Agustín Montero

    (Universidad de Buenos Aires)

  • Juan José Miranda-Bront

    (Universidad de Buenos Aires
    Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET))

  • Isabel Méndez-Díaz

    (Universidad de Buenos Aires)

Abstract

In this paper we address the Vehicle Routing Problem with Pickups and Deliveries (VRPPD), an extension of the classical Vehicle Routing Problem (VRP) where we consider precedences among customers, and develop an Integer Linear Programming (ILP) based local search procedure. We consider the capacitated one-to-one variant, where a particular precedence must be satisfied between pairs of origin-destination customers. We extend the scheme proposed in De Franceschi et al. (Math Program 105(2–3):471–499, 2006) for the Distance-Constrained Capacitated VRP, which has been successfully applied to other variants of the VRP. Starting from an initial feasible solution, this scheme follows the destroy/repair paradigm where a set of vertices is removed from the routes and reinserted by solving heuristically an associated ILP formulation with an exponential number of variables, named Reallocation Model. In this research, we propose two formulations for the Reallocation Model when considering pickup and delivery constraints and compare their behavior within the framework in terms of the trade off between the quality of the solutions obtained and the computational effort required. Based on the computational experience, the proposed scheme shows good potential to be applied in practice to this kind of problems and is a good starting point to consider more complex versions of the VRPPD.

Suggested Citation

  • Agustín Montero & Juan José Miranda-Bront & Isabel Méndez-Díaz, 2017. "An ILP-based local search procedure for the VRP with pickups and deliveries," Annals of Operations Research, Springer, vol. 259(1), pages 327-350, December.
  • Handle: RePEc:spr:annopr:v:259:y:2017:i:1:d:10.1007_s10479-017-2520-5
    DOI: 10.1007/s10479-017-2520-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-017-2520-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-017-2520-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stefan Ropke & David Pisinger, 2006. "An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery Problem with Time Windows," Transportation Science, INFORMS, vol. 40(4), pages 455-472, November.
    2. Gerardo Berbeglia & Jean-François Cordeau & Irina Gribkovskaia & Gilbert Laporte, 2007. "Rejoinder on: Static pickup and delivery problems: a classification scheme and survey," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 15(1), pages 45-47, July.
    3. Nanry, William P. & Wesley Barnes, J., 2000. "Solving the pickup and delivery problem with time windows using reactive tabu search," Transportation Research Part B: Methodological, Elsevier, vol. 34(2), pages 107-121, February.
    4. Muter, İbrahim & İlker Birbil, Ş. & Bülbül, Kerem & Şahin, Güvenç, 2012. "A note on “A LP-based heuristic for a time-constrained routing problem”," European Journal of Operational Research, Elsevier, vol. 221(2), pages 306-307.
    5. Gerardo Berbeglia & Jean-François Cordeau & Irina Gribkovskaia & Gilbert Laporte, 2007. "Static pickup and delivery problems: a classification scheme and survey," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 15(1), pages 1-31, July.
    6. S. Lin & B. W. Kernighan, 1973. "An Effective Heuristic Algorithm for the Traveling-Salesman Problem," Operations Research, INFORMS, vol. 21(2), pages 498-516, April.
    7. Naji-Azimi, Zahra & Salari, Majid & Toth, Paolo, 2012. "An Integer Linear Programming based heuristic for the Capacitated m-Ring-Star Problem," European Journal of Operational Research, Elsevier, vol. 217(1), pages 17-25.
    8. Helsgaun, Keld, 2000. "An effective implementation of the Lin-Kernighan traveling salesman heuristic," European Journal of Operational Research, Elsevier, vol. 126(1), pages 106-130, October.
    9. Jean-François Cordeau & Gilbert Laporte, 2007. "The dial-a-ride problem: models and algorithms," Annals of Operations Research, Springer, vol. 153(1), pages 29-46, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yichen Lu & Chao Yang & Jun Yang, 2022. "A multi-objective humanitarian pickup and delivery vehicle routing problem with drones," Annals of Operations Research, Springer, vol. 319(1), pages 291-353, December.
    2. Yong Wang & Qin Li & Xiangyang Guan & Jianxin Fan & Yong Liu & Haizhong Wang, 2020. "Collaboration and Resource Sharing in the Multidepot Multiperiod Vehicle Routing Problem with Pickups and Deliveries," Sustainability, MDPI, vol. 12(15), pages 1-33, July.
    3. Qiuping Ni & Yuanxiang Tang, 2023. "A Bibliometric Visualized Analysis and Classification of Vehicle Routing Problem Research," Sustainability, MDPI, vol. 15(9), pages 1-37, April.
    4. Xuhong Cai & Li Jiang & Songhu Guo & Hejiao Huang & Hongwei Du, 2022. "TLHSA and SACA: two heuristic algorithms for two variant VRP models," Journal of Combinatorial Optimization, Springer, vol. 44(4), pages 2996-3022, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baals, Julian & Emde, Simon & Turkensteen, Marcel, 2023. "Minimizing earliness-tardiness costs in supplier networks—A just-in-time truck routing problem," European Journal of Operational Research, Elsevier, vol. 306(2), pages 707-741.
    2. Bergmann, Felix M. & Wagner, Stephan M. & Winkenbach, Matthias, 2020. "Integrating first-mile pickup and last-mile delivery on shared vehicle routes for efficient urban e-commerce distribution," Transportation Research Part B: Methodological, Elsevier, vol. 131(C), pages 26-62.
    3. Regnier-Coudert, Olivier & McCall, John & Ayodele, Mayowa & Anderson, Steven, 2016. "Truck and trailer scheduling in a real world, dynamic and heterogeneous context," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 389-408.
    4. Neves-Moreira, F. & Amorim, P. & Guimarães, L. & Almada-Lobo, B., 2016. "A long-haul freight transportation problem: Synchronizing resources to deliver requests passing through multiple transshipment locations," European Journal of Operational Research, Elsevier, vol. 248(2), pages 487-506.
    5. Yanik, Seda & Bozkaya, Burcin & deKervenoael, Ronan, 2014. "A new VRPPD model and a hybrid heuristic solution approach for e-tailing," European Journal of Operational Research, Elsevier, vol. 236(3), pages 879-890.
    6. Dirk Männel & Andreas Bortfeldt, 2015. "A Hybrid Algorithm for the Vehicle Routing Problem with Pickup and Delivery and 3D Loading Constraints," FEMM Working Papers 150015, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    7. Yuan Qu & Jonathan F. Bard, 2015. "A Branch-and-Price-and-Cut Algorithm for Heterogeneous Pickup and Delivery Problems with Configurable Vehicle Capacity," Transportation Science, INFORMS, vol. 49(2), pages 254-270, May.
    8. Hyun Seop Uhm & Young Hoon Lee, 2022. "Vehicle routing problem under safe separation distance for multiple unmanned aerial vehicle operation," Operational Research, Springer, vol. 22(5), pages 5107-5136, November.
    9. Abdulkader, M.M.S. & Gajpal, Yuvraj & ElMekkawy, Tarek Y., 2018. "Vehicle routing problem in omni-channel retailing distribution systems," International Journal of Production Economics, Elsevier, vol. 196(C), pages 43-55.
    10. Männel, Dirk & Bortfeldt, Andreas, 2016. "A hybrid algorithm for the vehicle routing problem with pickup and delivery and three-dimensional loading constraints," European Journal of Operational Research, Elsevier, vol. 254(3), pages 840-858.
    11. Timothy Curtois & Dario Landa-Silva & Yi Qu & Wasakorn Laesanklang, 2018. "Large neighbourhood search with adaptive guided ejection search for the pickup and delivery problem with time windows," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 7(2), pages 151-192, June.
    12. Capelle, Thomas & Cortés, Cristián E. & Gendreau, Michel & Rey, Pablo A. & Rousseau, Louis-Martin, 2019. "A column generation approach for location-routing problems with pickup and delivery," European Journal of Operational Research, Elsevier, vol. 272(1), pages 121-131.
    13. Trotta, Manuel & Archetti, Claudia & Feillet, Dominique & Quilliot, Alain, 2022. "Pickup and delivery problems with autonomous vehicles on rings," European Journal of Operational Research, Elsevier, vol. 300(1), pages 221-236.
    14. Agatz, Niels & Erera, Alan & Savelsbergh, Martin & Wang, Xing, 2012. "Optimization for dynamic ride-sharing: A review," European Journal of Operational Research, Elsevier, vol. 223(2), pages 295-303.
    15. Luciano Costa & Claudio Contardo & Guy Desaulniers, 2019. "Exact Branch-Price-and-Cut Algorithms for Vehicle Routing," Transportation Science, INFORMS, vol. 53(4), pages 946-985, July.
    16. Mohammad Torkjazi & Nathan Huynh, 2019. "Effectiveness of Dynamic Insertion Scheduling Strategy for Demand-Responsive Paratransit Vehicles Using Agent-Based Simulation," Sustainability, MDPI, vol. 11(19), pages 1-12, September.
    17. Liu, Mengyang & Luo, Zhixing & Lim, Andrew, 2015. "A branch-and-cut algorithm for a realistic dial-a-ride problem," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 267-288.
    18. Ohad Eisenhandler & Michal Tzur, 2019. "The Humanitarian Pickup and Distribution Problem," Operations Research, INFORMS, vol. 67(1), pages 10-32, January.
    19. Hammami, Farouk & Rekik, Monia & Coelho, Leandro C., 2019. "Exact and heuristic solution approaches for the bid construction problem in transportation procurement auctions with a heterogeneous fleet," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 150-177.
    20. Gupta, Diwakar & Chen, Hao-Wei & Miller, Lisa A. & Surya, Fajarrani, 2010. "Improving the efficiency of demand-responsive paratransit services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(4), pages 201-217, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:259:y:2017:i:1:d:10.1007_s10479-017-2520-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.