IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v206y2013i1p501-52510.1007-s10479-012-1274-3.html
   My bibliography  Save this article

A hybrid algorithm for linearly constrained minimax problems

Author

Listed:
  • Fusheng Wang

Abstract

Many real life problems can be stated as a minimax problem, such as economics, finance, management, engineering and other fields, which demonstrate the importance of having reliable methods to tackle minimax problems. In this paper, an algorithm for linearly constrained minimax problems is presented in which we combine the trust-region methods with the line-search methods and curve-search methods. By means of this hybrid technique, it avoids possibly solving the trust-region subproblems many times, and make better use of the advantages of different methods. Under weaker conditions, the global and superlinear convergence are achieved. Numerical experiments show that the new algorithm is robust and efficient. Copyright Springer Science+Business Media New York 2013

Suggested Citation

  • Fusheng Wang, 2013. "A hybrid algorithm for linearly constrained minimax problems," Annals of Operations Research, Springer, vol. 206(1), pages 501-525, July.
  • Handle: RePEc:spr:annopr:v:206:y:2013:i:1:p:501-525:10.1007/s10479-012-1274-3
    DOI: 10.1007/s10479-012-1274-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-012-1274-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-012-1274-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wenyu Sun & Ya-xiang Yuan, 2001. "A Conic Trust-Region Method for Nonlinearly Constrained Optimization," Annals of Operations Research, Springer, vol. 103(1), pages 175-191, March.
    2. Y.H. Yu & L. Gao, 2002. "Nonmonotone Line Search Algorithm for Constrained Minimax Problems," Journal of Optimization Theory and Applications, Springer, vol. 115(2), pages 419-446, November.
    3. K.L. Teo & X.Q. Yang, 2001. "Portfolio Selection Problem with Minimax Type Risk Function," Annals of Operations Research, Springer, vol. 101(1), pages 333-349, January.
    4. Tammy Drezner, 2009. "Location of retail facilities under conditions of uncertainty," Annals of Operations Research, Springer, vol. 167(1), pages 107-120, March.
    5. Rustem, Berc & Becker, Robin G. & Marty, Wolfgang, 2000. "Robust min-max portfolio strategies for rival forecast and risk scenarios," Journal of Economic Dynamics and Control, Elsevier, vol. 24(11-12), pages 1591-1621, October.
    6. Fusheng Wang & Kecun Zhang, 2008. "A hybrid algorithm for nonlinear minimax problems," Annals of Operations Research, Springer, vol. 164(1), pages 167-191, November.
    7. Oded Berman & Jiamin Wang & Zvi Drezner & George Wesolowsky, 2003. "A Probabilistic Minimax Location Problem on the Plane," Annals of Operations Research, Springer, vol. 122(1), pages 59-70, September.
    8. Igor Averbakh & Oded Berman, 2002. "Minmax p-Traveling Salesmen Location Problems on a Tree," Annals of Operations Research, Springer, vol. 110(1), pages 55-68, February.
    9. C. Michelot & F. Plastria, 2002. "An Extended Multifacility Minimax Location Problem Revisited," Annals of Operations Research, Springer, vol. 111(1), pages 167-179, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jin-bao Jian & Qing-juan Hu & Chun-ming Tang, 2014. "Superlinearly Convergent Norm-Relaxed SQP Method Based on Active Set Identification and New Line Search for Constrained Minimax Problems," Journal of Optimization Theory and Applications, Springer, vol. 163(3), pages 859-883, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khaki, Audil & Prasad, Mason & Al-Mohamad, Somar & Bakry, Walid & Vo, Xuan Vinh, 2023. "Re-evaluating portfolio diversification and design using cryptocurrencies: Are decentralized cryptocurrencies enough?," Research in International Business and Finance, Elsevier, vol. 64(C).
    2. Yunchol Jong, 2012. "Optimization Method for Interval Portfolio Selection Based on Satisfaction Index of Interval inequality Relation," Papers 1207.1932, arXiv.org.
    3. Lutgens, F. & Sturm, J.F., 2002. "Robust One Period Option Modelling," Other publications TiSEM a5d55d83-4751-461f-8114-1, Tilburg University, School of Economics and Management.
    4. Costa, Oswaldo L.V. & de Oliveira Ribeiro, Celma & Rego, Erik Eduardo & Stern, Julio Michael & Parente, Virginia & Kileber, Solange, 2017. "Robust portfolio optimization for electricity planning: An application based on the Brazilian electricity mix," Energy Economics, Elsevier, vol. 64(C), pages 158-169.
    5. Nagy, Gabor & Salhi, Said, 2007. "Location-routing: Issues, models and methods," European Journal of Operational Research, Elsevier, vol. 177(2), pages 649-672, March.
    6. Mark Horner & Michael Widener, 2011. "The effects of transportation network failure on people’s accessibility to hurricane disaster relief goods: a modeling approach and application to a Florida case study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(3), pages 1619-1634, December.
    7. Bhuvnesh Sharma & M. Ramkumar & Nachiappan Subramanian & Bharat Malhotra, 2019. "Dynamic temporary blood facility location-allocation during and post-disaster periods," Annals of Operations Research, Springer, vol. 283(1), pages 705-736, December.
    8. Gert Wanka & Oleg Wilfer, 2017. "Duality results for nonlinear single minimax location problems via multi-composed optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 86(2), pages 401-439, October.
    9. Ping Hu & Xu-Qing Liu, 2013. "A Nonmonotone Line Search Slackness Technique for Unconstrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 158(3), pages 773-786, September.
    10. Esther Mohr & Robert Dochow, 2017. "Risk management strategies for finding universal portfolios," Annals of Operations Research, Springer, vol. 256(1), pages 129-147, September.
    11. Frank Fabozzi & Dashan Huang & Guofu Zhou, 2010. "Robust portfolios: contributions from operations research and finance," Annals of Operations Research, Springer, vol. 176(1), pages 191-220, April.
    12. He, Guang & Huang, Nan-jing, 2014. "A new particle swarm optimization algorithm with an application," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 521-528.
    13. Ahmadi-Javid, Amir & Amiri, Elahe & Meskar, Mahla, 2018. "A Profit-Maximization Location-Routing-Pricing Problem: A Branch-and-Price Algorithm," European Journal of Operational Research, Elsevier, vol. 271(3), pages 866-881.
    14. Polak, George G. & Rogers, David F. & Sweeney, Dennis J., 2010. "Risk management strategies via minimax portfolio optimization," European Journal of Operational Research, Elsevier, vol. 207(1), pages 409-419, November.
    15. Zvi Drezner & Atsuo Suzuki, 2004. "The Big Triangle Small Triangle Method for the Solution of Nonconvex Facility Location Problems," Operations Research, INFORMS, vol. 52(1), pages 128-135, February.
    16. Jin-bao Jian & Qing-juan Hu & Chun-ming Tang, 2014. "Superlinearly Convergent Norm-Relaxed SQP Method Based on Active Set Identification and New Line Search for Constrained Minimax Problems," Journal of Optimization Theory and Applications, Springer, vol. 163(3), pages 859-883, December.
    17. Jin-bao Jian & Xing-de Mo & Li-juan Qiu & Su-ming Yang & Fu-sheng Wang, 2014. "Simple Sequential Quadratically Constrained Quadratic Programming Feasible Algorithm with Active Identification Sets for Constrained Minimax Problems," Journal of Optimization Theory and Applications, Springer, vol. 160(1), pages 158-188, January.
    18. Taboga, Marco, 2004. "A Simple Model of Robust Portfolio Selection," MPRA Paper 16472, University Library of Munich, Germany.
    19. Zvi Drezner & Dawit Zerom, 2023. "Competitive facility location under attrition," Computational Management Science, Springer, vol. 20(1), pages 1-19, December.
    20. Gulpinar, Nalan & Rustem, Berc, 2007. "Worst-case robust decisions for multi-period mean-variance portfolio optimization," European Journal of Operational Research, Elsevier, vol. 183(3), pages 981-1000, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:206:y:2013:i:1:p:501-525:10.1007/s10479-012-1274-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.