IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v161y2008i1p149-17010.1007-s10479-007-0260-7.html
   My bibliography  Save this article

Scheduling vessels and container-yard operations with conflicting objectives

Author

Listed:
  • Endre Boros
  • Lei Lei
  • Yao Zhao
  • Hua Zhong

Abstract

We consider the problem of coordinating the operations of two supply chain partners: a foreign shipping company and a domestic port. The two partners have conflicting business objectives, and the issue is to determine the optimal cycle time, by which the shipping company removes the empty containers from the domestic port, so that the joint profit of the two partners is maximized. The domestic port prefers a shorter cycle time to mitigate its empty container accumulation and land use problems, while the shipping company wishes a longer cycle time to save its expensive vessel capacities. We propose an iterative procedure to search for this optimal cycle time. In each iteration, a candidate cycle time is evaluated by solving a deterministic vessel scheduling problem and a stochastic container-yard capacity optimization problem. We prove the properties of the vessel scheduling problem, derive the optimality condition under which the vessel scheduling problem can be decomposed, and show that the profit function of the domestic port is convex and thus the optimal container-yard capacity can be determined efficiently. Empirical observations on the algorithm computational performance collected from over 300 randomly generated test cases under various problem settings are reported. Copyright Springer Science+Business Media, LLC 2008

Suggested Citation

  • Endre Boros & Lei Lei & Yao Zhao & Hua Zhong, 2008. "Scheduling vessels and container-yard operations with conflicting objectives," Annals of Operations Research, Springer, vol. 161(1), pages 149-170, July.
  • Handle: RePEc:spr:annopr:v:161:y:2008:i:1:p:149-170:10.1007/s10479-007-0260-7
    DOI: 10.1007/s10479-007-0260-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-007-0260-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-007-0260-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. H B Bendall & A F Stent, 2001. "A Scheduling Model for a High Speed Containership Service: A Hub and Spoke Short-Sea Application," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 3(3), pages 262-277, September.
    2. Sambracos, E. & Paravantis, J. A. & Tarantilis, C. D. & Kiranoudis, C. T., 2004. "Dispatching of small containers via coastal freight liners: The case of the Aegean Sea," European Journal of Operational Research, Elsevier, vol. 152(2), pages 365-381, January.
    3. Arie Harel, 1990. "Convexity Properties of the Erlang Loss Formula," Operations Research, INFORMS, vol. 38(3), pages 499-505, June.
    4. B. Avi-Itzhak & S. Ben-Tuvia, 1963. "A Problem of Optimizing a Collecting Reservoir System," Operations Research, INFORMS, vol. 11(1), pages 122-136, February.
    5. Kjetil Fagerholt *, 2004. "Designing optimal routes in a liner shipping problem," Maritime Policy & Management, Taylor & Francis Journals, vol. 31(4), pages 259-268, October.
    6. Lode Li & Hongtao Zhang, 2000. "The Multistage Service Facility Start-Up and Capacity Model," Operations Research, INFORMS, vol. 48(3), pages 490-497, June.
    7. Marielle Christiansen & Kjetil Fagerholt & David Ronen, 2004. "Ship Routing and Scheduling: Status and Perspectives," Transportation Science, INFORMS, vol. 38(1), pages 1-18, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maxim A. Dulebenets & Junayed Pasha & Olumide F. Abioye & Masoud Kavoosi, 2021. "Vessel scheduling in liner shipping: a critical literature review and future research needs," Flexible Services and Manufacturing Journal, Springer, vol. 33(1), pages 43-106, March.
    2. Ali Cheaitou & Pierre Cariou, 2019. "Greening of maritime transportation: a multi-objective optimization approach," Annals of Operations Research, Springer, vol. 273(1), pages 501-525, February.
    3. Yiting Xing & Ling Li & Zhuming Bi & Marzena Wilamowska‐Korsak & Li Zhang, 2013. "Operations Research (OR) in Service Industries: A Comprehensive Review," Systems Research and Behavioral Science, Wiley Blackwell, vol. 30(3), pages 300-353, May.
    4. Kartikeya Puranam & Michael Katehakis, 2014. "On optimal bidding and inventory control in sequential procurement auctions: the multi period case," Annals of Operations Research, Springer, vol. 217(1), pages 447-462, June.
    5. Margaretha Gansterer & Richard F. Hartl & Sarah Wieser, 2021. "Assignment constraints in shared transportation services," Annals of Operations Research, Springer, vol. 305(1), pages 513-539, October.
    6. Gang Chen & Liping Jiang, 2016. "Managing customer arrivals with time windows: a case of truck arrivals at a congested container terminal," Annals of Operations Research, Springer, vol. 244(2), pages 349-365, September.
    7. Pang, King-Wah & Xu, Zhou & Li, Chung-Lun, 2011. "Ship routing problem with berthing time clash avoidance constraints," International Journal of Production Economics, Elsevier, vol. 131(2), pages 752-762, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiang Meng & Shuaian Wang & Henrik Andersson & Kristian Thun, 2014. "Containership Routing and Scheduling in Liner Shipping: Overview and Future Research Directions," Transportation Science, INFORMS, vol. 48(2), pages 265-280, May.
    2. Manuel Herrera & Per J. Agrell & Casiano Manrique-de-Lara-Peñate & Lourdes Trujillo, 2017. "Vessel capacity restrictions in the fleet deployment problem: an application to the Panama Canal," Annals of Operations Research, Springer, vol. 253(2), pages 845-869, June.
    3. Zheng, Jianfeng & Sun, Zhuo & Zhang, Fangjun, 2016. "Measuring the perceived container leasing prices in liner shipping network design with empty container repositioning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 94(C), pages 123-140.
    4. Wang, Shuaian & Meng, Qiang & Sun, Zhuo, 2013. "Container routing in liner shipping," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 49(1), pages 1-7.
    5. Zheng, Jianfeng & Meng, Qiang & Sun, Zhuo, 2014. "Impact analysis of maritime cabotage legislations on liner hub-and-spoke shipping network design," European Journal of Operational Research, Elsevier, vol. 234(3), pages 874-884.
    6. Chen, Kang & Chen, Dongxu & Sun, Xueshan & Yang, Zhongzhen, 2016. "Container Ocean-transportation System Design with the factors of demand fluctuation and choice inertia of shippers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 95(C), pages 267-281.
    7. Meng, Qiang & Wang, Tingsong & Wang, Shuaian, 2012. "Short-term liner ship fleet planning with container transshipment and uncertain container shipment demand," European Journal of Operational Research, Elsevier, vol. 223(1), pages 96-105.
    8. Zheng, Jianfeng & Meng, Qiang & Sun, Zhuo, 2015. "Liner hub-and-spoke shipping network design," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 75(C), pages 32-48.
    9. Chen, Jingxu & Jia, Shuai & Wang, Shuaian & Liu, Zhiyuan, 2018. "Subloop-based reversal of port rotation directions for container liner shipping network alteration," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 336-361.
    10. Meng, Qiang & Wang, Shuaian, 2012. "Liner ship fleet deployment with week-dependent container shipment demand," European Journal of Operational Research, Elsevier, vol. 222(2), pages 241-252.
    11. Zheng, Jianfeng & Qi, Jingwen & Sun, Zhuo & Li, Feng, 2018. "Community structure based global hub location problem in liner shipping," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 1-19.
    12. Wang, Shuaian & Meng, Qiang, 2012. "Liner ship fleet deployment with container transshipment operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(2), pages 470-484.
    13. Liu, Zhiyuan & Meng, Qiang & Wang, Shuaian & Sun, Zhuo, 2014. "Global intermodal liner shipping network design," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 61(C), pages 28-39.
    14. Pantuso, Giovanni & Fagerholt, Kjetil & Hvattum, Lars Magnus, 2014. "A survey on maritime fleet size and mix problems," European Journal of Operational Research, Elsevier, vol. 235(2), pages 341-349.
    15. Berit D. Brouer & J. Fernando Alvarez & Christian E. M. Plum & David Pisinger & Mikkel M. Sigurd, 2014. "A Base Integer Programming Model and Benchmark Suite for Liner-Shipping Network Design," Transportation Science, INFORMS, vol. 48(2), pages 281-312, May.
    16. Chen, Kang & Yang, Zhongzhen & Notteboom, Theo, 2014. "The design of coastal shipping services subject to carbon emission reduction targets and state subsidy levels," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 61(C), pages 192-211.
    17. Christiansen, Marielle & Fagerholt, Kjetil & Nygreen, Bjørn & Ronen, David, 2013. "Ship routing and scheduling in the new millennium," European Journal of Operational Research, Elsevier, vol. 228(3), pages 467-483.
    18. Michael F. Gorman & John-Paul Clarke & Amir Hossein Gharehgozli & Michael Hewitt & René de Koster & Debjit Roy, 2014. "State of the Practice: A Review of the Application of OR/MS in Freight Transportation," Interfaces, INFORMS, vol. 44(6), pages 535-554, December.
    19. Mulder, J. & Dekker, R., 2016. "Will liner ships make fewer port calls per route?," Econometric Institute Research Papers EI2016-04, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    20. Kjetil Fagerholt *, 2004. "Designing optimal routes in a liner shipping problem," Maritime Policy & Management, Taylor & Francis Journals, vol. 31(4), pages 259-268, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:161:y:2008:i:1:p:149-170:10.1007/s10479-007-0260-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.