IDEAS home Printed from https://ideas.repec.org/a/spr/alstar/v99y2015i4p467-492.html
   My bibliography  Save this article

On the performance of two clustering methods for spatial functional data

Author

Listed:
  • Elvira Romano
  • Jorge Mateu
  • Ramon Giraldo

Abstract

The performance of two clustering strategies for spatially correlated functional data based on the same measure of spatial dependence is examined and compared. In particular, the role of the spatial dependence computed by the trace-variogram function is analyzed. The main features of both procedures is shown through a simulation study based on a variety of practical scenarios easily encountered in the analysis of spatial functional data. An application on real data based on salinity curves is also presented. Copyright Springer-Verlag Berlin Heidelberg 2015

Suggested Citation

  • Elvira Romano & Jorge Mateu & Ramon Giraldo, 2015. "On the performance of two clustering methods for spatial functional data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(4), pages 467-492, October.
  • Handle: RePEc:spr:alstar:v:99:y:2015:i:4:p:467-492
    DOI: 10.1007/s10182-015-0253-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10182-015-0253-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10182-015-0253-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lawrence Hubert & Phipps Arabie, 1985. "Comparing partitions," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 193-218, December.
    2. Manteiga, Wenceslao Gonzalez & Vieu, Philippe, 2007. "Statistics for Functional Data," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4788-4792, June.
    3. Mariano Valderrama, 2007. "An overview to modelling functional data," Computational Statistics, Springer, vol. 22(3), pages 331-334, September.
    4. Tarpey, Thaddeus, 2007. "Linear Transformations and the k-Means Clustering Algorithm: Applications to Clustering Curves," The American Statistician, American Statistical Association, vol. 61, pages 34-40, February.
    5. R. Giraldo & P. Delicado & J. Mateu, 2012. "Hierarchical clustering of spatially correlated functional data," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 66(4), pages 403-421, November.
    6. Julien Jacques & Cristian Preda, 2014. "Functional data clustering: a survey," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(3), pages 231-255, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tapia, Mariela & Heinemann, Detlev & Ballari, Daniela & Zondervan, Edwin, 2022. "Spatio-temporal characterization of long-term solar resource using spatial functional data analysis: Understanding the variability and complementarity of global horizontal irradiance in Ecuador," Renewable Energy, Elsevier, vol. 189(C), pages 1176-1193.
    2. Corinna Kleinert & Alexander Vosseler & Uwe Blien, 2018. "Classifying vocational training markets," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 61(1), pages 31-48, July.
    3. Giraldo, Ramón & Dabo-Niang, Sophie & Martínez, Sergio, 2018. "Statistical modeling of spatial big data: An approach from a functional data analysis perspective," Statistics & Probability Letters, Elsevier, vol. 136(C), pages 126-129.
    4. Římalová, Veronika & Fišerová, Eva & Menafoglio, Alessandra & Pini, Alessia, 2022. "Inference for spatial regression models with functional response using a permutational approach," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    5. Menafoglio, Alessandra & Secchi, Piercesare, 2017. "Statistical analysis of complex and spatially dependent data: A review of Object Oriented Spatial Statistics," European Journal of Operational Research, Elsevier, vol. 258(2), pages 401-410.
    6. Ramón Giraldo & William Caballero & Jesús Camacho-Tamayo, 2018. "Mantel test for spatial functional data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(1), pages 21-39, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aneiros, Germán & Cao, Ricardo & Fraiman, Ricardo & Genest, Christian & Vieu, Philippe, 2019. "Recent advances in functional data analysis and high-dimensional statistics," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 3-9.
    2. Vieu, Philippe, 2018. "On dimension reduction models for functional data," Statistics & Probability Letters, Elsevier, vol. 136(C), pages 134-138.
    3. Aneiros, Germán & Horová, Ivana & Hušková, Marie & Vieu, Philippe, 2022. "On functional data analysis and related topics," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    4. Han Shang, 2014. "A survey of functional principal component analysis," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 98(2), pages 121-142, April.
    5. Kim, Joonpyo & Oh, Hee-Seok, 2020. "Pseudo-quantile functional data clustering," Journal of Multivariate Analysis, Elsevier, vol. 178(C).
    6. Carlos Barrera-Causil & Juan Carlos Correa & Andrew Zamecnik & Francisco Torres-Avilés & Fernando Marmolejo-Ramos, 2021. "An FDA-Based Approach for Clustering Elicited Expert Knowledge," Stats, MDPI, vol. 4(1), pages 1-21, March.
    7. Yifan Zhu & Chongzhi Di & Ying Qing Chen, 2019. "Clustering Functional Data with Application to Electronic Medication Adherence Monitoring in HIV Prevention Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(2), pages 238-261, July.
    8. Li, Pai-Ling & Chiou, Jeng-Min, 2011. "Identifying cluster number for subspace projected functional data clustering," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2090-2103, June.
    9. Golovkine, Steven & Klutchnikoff, Nicolas & Patilea, Valentin, 2022. "Clustering multivariate functional data using unsupervised binary trees," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    10. Gheriballah, Abdelkader & Laksaci, Ali & Sekkal, Soumeya, 2013. "Nonparametric M-regression for functional ergodic data," Statistics & Probability Letters, Elsevier, vol. 83(3), pages 902-908.
    11. Laurent Delsol, 2013. "No effect tests in regression on functional variable and some applications to spectrometric studies," Computational Statistics, Springer, vol. 28(4), pages 1775-1811, August.
    12. Boj, Eva & Delicado, Pedro & Fortiana, Josep, 2010. "Distance-based local linear regression for functional predictors," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 429-437, February.
    13. Tapia, Mariela & Heinemann, Detlev & Ballari, Daniela & Zondervan, Edwin, 2022. "Spatio-temporal characterization of long-term solar resource using spatial functional data analysis: Understanding the variability and complementarity of global horizontal irradiance in Ecuador," Renewable Energy, Elsevier, vol. 189(C), pages 1176-1193.
    14. Heungsun Hwang & Hye Suk & Yoshio Takane & Jang-Han Lee & Jooseop Lim, 2015. "Generalized Functional Extended Redundancy Analysis," Psychometrika, Springer;The Psychometric Society, vol. 80(1), pages 101-125, March.
    15. Delicado, P., 2011. "Dimensionality reduction when data are density functions," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 401-420, January.
    16. Michio Yamamoto, 2012. "Clustering of functional data in a low-dimensional subspace," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 6(3), pages 219-247, October.
    17. Wafaa Benyelles & Tahar Mourid, 2012. "On a minimum distance estimate of the period in functional autoregressive processes," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(8), pages 1703-1718, February.
    18. Ja‐Yoon Jang & Hee‐Seok Oh & Yaeji Lim & Ying Kuen Cheung, 2021. "Ensemble clustering for step data via binning," Biometrics, The International Biometric Society, vol. 77(1), pages 293-304, March.
    19. Alessandro Casa & Charles Bouveyron & Elena Erosheva & Giovanna Menardi, 2021. "Co-clustering of Time-Dependent Data via the Shape Invariant Model," Journal of Classification, Springer;The Classification Society, vol. 38(3), pages 626-649, October.
    20. Germán Aneiros & Philippe Vieu, 2016. "Comments on: Probability enhanced effective dimension reduction for classifying sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 27-32, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:alstar:v:99:y:2015:i:4:p:467-492. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.