IDEAS home Printed from https://ideas.repec.org/a/spr/alstar/v102y2018i2d10.1007_s10182-017-0299-y.html
   My bibliography  Save this article

On composite likelihood in bivariate meta-analysis of diagnostic test accuracy studies

Author

Listed:
  • Aristidis K. Nikoloulopoulos

    (University of East Anglia)

Abstract

The composite likelihood is amongst the computational methods used for estimation of the generalized linear mixed model (GLMM) in the context of bivariate meta-analysis of diagnostic test accuracy studies. Its advantage is that the likelihood can be derived conveniently under the assumption of independence between the random effects, but there has not been a clear analysis of the merit or necessity of this method. For synthesis of diagnostic test accuracy studies, a copula mixed model has been proposed in the biostatistics literature. This general model includes the GLMM as a special case and can also allow for flexible dependence modelling, different from assuming simple linear correlation structures, normality and tail independence in the joint tails. A maximum likelihood (ML) method, which is based on evaluating the bi-dimensional integrals of the likelihood with quadrature methods, has been proposed, and in fact it eases any computational difficulty that might be caused by the double integral in the likelihood function. Both methods are thoroughly examined with extensive simulations and illustrated with data of a published meta-analysis. It is shown that the ML method has no non-convergence issues or computational difficulties and at the same time allows estimation of the dependence between study-specific sensitivity and specificity and thus prediction via summary receiver operating curves.

Suggested Citation

  • Aristidis K. Nikoloulopoulos, 2018. "On composite likelihood in bivariate meta-analysis of diagnostic test accuracy studies," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(2), pages 211-227, April.
  • Handle: RePEc:spr:alstar:v:102:y:2018:i:2:d:10.1007_s10182-017-0299-y
    DOI: 10.1007/s10182-017-0299-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10182-017-0299-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10182-017-0299-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cristiano Varin, 2008. "On composite marginal likelihoods," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 92(1), pages 1-28, February.
    2. L.R. Arends & T.H. Hamza & J.C. van Houwelingen & M.H. Heijenbrok-Kal & M.G.M. Hunink & T. Stijnen, 2008. "Bivariate Random Effects Meta-Analysis of ROC Curves," Medical Decision Making, , vol. 28(5), pages 621-638, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cavit Pakel & Neil Shephard & Kevin Sheppard, 2009. "Nuisance parameters, composite likelihoods and a panel of GARCH models," Economics Papers 2009-W12, Economics Group, Nuffield College, University of Oxford.
    2. Cavit Pakel & Neil Shephard & Kevin Sheppard & Robert F. Engle, 2021. "Fitting Vast Dimensional Time-Varying Covariance Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(3), pages 652-668, July.
    3. Paik, Jane & Ying, Zhiliang, 2012. "A composite likelihood approach for spatially correlated survival data," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 209-216, January.
    4. Costa, Rui J. & Wilkinson-Herbots, Hilde M., 2021. "Inference of gene flow in the process of speciation: Efficient maximum-likelihood implementation of a generalised isolation-with-migration model," Theoretical Population Biology, Elsevier, vol. 140(C), pages 1-15.
    5. Vassilis Vasdekis & Silvia Cagnone & Irini Moustaki, 2012. "A Composite Likelihood Inference in Latent Variable Models for Ordinal Longitudinal Responses," Psychometrika, Springer;The Psychometric Society, vol. 77(3), pages 425-441, July.
    6. Lee Fawcett & David Walshaw, 2014. "Estimating the probability of simultaneous rainfall extremes within a region: a spatial approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(5), pages 959-976, May.
    7. Meisam Moghimbeygi & Mousa Golalizadeh, 2019. "A longitudinal model for shapes through triangulation," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(1), pages 99-121, March.
    8. Bhat, Chandra R. & Sener, Ipek N. & Eluru, Naveen, 2010. "A flexible spatially dependent discrete choice model: Formulation and application to teenagers' weekday recreational activity participation," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 903-921, September.
    9. Nobel, Anne & Lizin, Sebastien & Malina, Robert, 2023. "What drives the designation of protected areas? Accounting for spatial dependence using a composite marginal likelihood approach," Ecological Economics, Elsevier, vol. 205(C).
    10. Jie Chen & Mingpeng Wu & Rongbo Liu & Siyi Li & Ronghui Gao & Bin Song, 2015. "Preoperative Evaluation of the Histological Grade of Hepatocellular Carcinoma with Diffusion-Weighted Imaging: A Meta-Analysis," PLOS ONE, Public Library of Science, vol. 10(2), pages 1-16, February.
    11. Bartolucci, Francesco & Belotti, Federico & Peracchi, Franco, 2015. "Testing for time-invariant unobserved heterogeneity in generalized linear models for panel data," Journal of Econometrics, Elsevier, vol. 184(1), pages 111-123.
    12. N. Martín & L. Pardo & K. Zografos, 2019. "On divergence tests for composite hypotheses under composite likelihood," Statistical Papers, Springer, vol. 60(6), pages 1883-1919, December.
    13. Nikolay Gospodinov & Esfandiar Maasoumi, 2017. "General Aggregation of Misspecified Asset Pricing Models," FRB Atlanta Working Paper 2017-10, Federal Reserve Bank of Atlanta.
    14. Stanislav Anatolyev & Renat Khabibullin & Artem Prokhorov, 2012. "Reconstructing high dimensional dynamic distributions from distributions of lower dimension," Working Papers 12003, Concordia University, Department of Economics.
    15. A. Philip Dawid & Monica Musio & Laura Ventura, 2016. "Minimum Scoring Rule Inference," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(1), pages 123-138, March.
    16. Nikoloulopoulos, Aristidis K., 2023. "Efficient and feasible inference for high-dimensional normal copula regression models," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    17. Larribe Fabrice & Lessard Sabin, 2008. "A Composite-Conditional-Likelihood Approach for Gene Mapping Based on Linkage Disequilibrium in Windows of Marker Loci," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 7(1), pages 1-33, August.
    18. Gourieroux, C. & Monfort, A., 2018. "Composite indirect inference with application to corporate risks," Econometrics and Statistics, Elsevier, vol. 7(C), pages 30-45.
    19. Ruili Wei & Chaonan Wang & Fangping He & Lirong Hong & Jie Zhang & Wangxiao Bao & Fangxia Meng & Benyan Luo, 2019. "Prediction of poor outcome after hypoxic-ischemic brain injury by diffusion-weighted imaging: A systematic review and meta-analysis," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-16, December.
    20. Huang Huang & Sameh Abdulah & Ying Sun & Hatem Ltaief & David E. Keyes & Marc G. Genton, 2021. "Competition on Spatial Statistics for Large Datasets," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(4), pages 580-595, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:alstar:v:102:y:2018:i:2:d:10.1007_s10182-017-0299-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.