IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v72y2020i3d10.1007_s10463-019-00707-5.html
   My bibliography  Save this article

More good news on the HKM test for multivariate reflected symmetry about an unknown centre

Author

Listed:
  • Norbert Henze

    (Karlsruhe Institute of Technology (KIT))

  • Celeste Mayer

    (Karlsruhe Institute of Technology (KIT))

Abstract

We revisit the problem of testing for multivariate reflected symmetry about an unspecified point. Although this testing problem is invariant with respect to full-rank affine transformations, among the few hitherto proposed tests only a class of tests studied in Henze et al. (J Multivar Anal 87:275–297, 2003) that depends on a positive parameter a respects this property. We identify a measure of deviation $$\varDelta _a$$Δa (say) from symmetry associated with the test statistic $$T_{n,a}$$Tn,a (say), and we obtain the limit normal distribution of $$T_{n,a}$$Tn,a as $$n \rightarrow \infty $$n→∞ under a fixed alternative to symmetry. Since a consistent estimator of the variance of this limit normal distribution is available, we obtain an asymptotic confidence interval for $$\varDelta _a$$Δa. The test, when applied to a classical data set, strongly rejects the hypothesis of reflected symmetry, although other tests even do not object against the much stronger hypothesis of elliptical symmetry.

Suggested Citation

  • Norbert Henze & Celeste Mayer, 2020. "More good news on the HKM test for multivariate reflected symmetry about an unknown centre," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(3), pages 741-770, June.
  • Handle: RePEc:spr:aistmt:v:72:y:2020:i:3:d:10.1007_s10463-019-00707-5
    DOI: 10.1007/s10463-019-00707-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10463-019-00707-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10463-019-00707-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. P. Royston, 1983. "Some Techniques for Assessing Multivarate Normality Based on the Shapiro‐Wilk W," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 32(2), pages 121-133, June.
    2. Schott, James R., 2002. "Testing for elliptical symmetry in covariance-matrix-based analyses," Statistics & Probability Letters, Elsevier, vol. 60(4), pages 395-404, December.
    3. Heathcote, C. R. & Rachev, S. T. & Cheng, B., 1995. "Testing Multivariate Symmetry," Journal of Multivariate Analysis, Elsevier, vol. 54(1), pages 91-112, July.
    4. Henze, Norbert & Wagner, Thorsten, 1997. "A New Approach to the BHEP Tests for Multivariate Normality," Journal of Multivariate Analysis, Elsevier, vol. 62(1), pages 1-23, July.
    5. Henze, N. & Klar, B. & Meintanis, S. G., 2003. "Invariant tests for symmetry about an unspecified point based on the empirical characteristic function," Journal of Multivariate Analysis, Elsevier, vol. 87(2), pages 275-297, November.
    6. L. Baringhaus & B. Ebner & N. Henze, 2017. "The limit distribution of weighted $$L^2$$ L 2 -goodness-of-fit statistics under fixed alternatives, with applications," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(5), pages 969-995, October.
    7. Norbert Henze, 2002. "Invariant tests for multivariate normality: a critical review," Statistical Papers, Springer, vol. 43(4), pages 467-506, October.
    8. Neuhaus, Georg & Zhu, Li-Xing, 1998. "Permutation Tests for Reflected Symmetry," Journal of Multivariate Analysis, Elsevier, vol. 67(2), pages 129-153, November.
    9. Henze, Norbert, 1997. "Extreme smoothing and testing for multivariate normality," Statistics & Probability Letters, Elsevier, vol. 35(3), pages 203-213, October.
    10. Christopher Partlett & Prakash Patil, 2017. "Measuring asymmetry and testing symmetry," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(2), pages 429-460, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sakineh Dehghan & Mohammad Reza Faridrohani & Zahra Barzegar, 2023. "Testing for diagonal symmetry based on center-outward ranking," Statistical Papers, Springer, vol. 64(1), pages 255-283, February.
    2. Philip Dörr & Bruno Ebner & Norbert Henze, 2021. "Testing multivariate normality by zeros of the harmonic oscillator in characteristic function spaces," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 456-501, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Norbert Henze & María Dolores Jiménez-Gamero, 2019. "A new class of tests for multinormality with i.i.d. and garch data based on the empirical moment generating function," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 499-521, June.
    2. Philip Dörr & Bruno Ebner & Norbert Henze, 2021. "Testing multivariate normality by zeros of the harmonic oscillator in characteristic function spaces," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 456-501, June.
    3. Tenreiro, Carlos, 2011. "An affine invariant multiple test procedure for assessing multivariate normality," Computational Statistics & Data Analysis, Elsevier, vol. 55(5), pages 1980-1992, May.
    4. Henze, N. & Klar, B. & Meintanis, S. G., 2003. "Invariant tests for symmetry about an unspecified point based on the empirical characteristic function," Journal of Multivariate Analysis, Elsevier, vol. 87(2), pages 275-297, November.
    5. Bruno Ebner & Norbert Henze, 2020. "Tests for multivariate normality—a critical review with emphasis on weighted $$L^2$$ L 2 -statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(4), pages 845-892, December.
    6. Chen, Feifei & Jiménez–Gamero, M. Dolores & Meintanis, Simos & Zhu, Lixing, 2022. "A general Monte Carlo method for multivariate goodness–of–fit testing applied to elliptical families," Computational Statistics & Data Analysis, Elsevier, vol. 175(C).
    7. L. Baringhaus & B. Ebner & N. Henze, 2017. "The limit distribution of weighted $$L^2$$ L 2 -goodness-of-fit statistics under fixed alternatives, with applications," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(5), pages 969-995, October.
    8. Rainer Dyckerhoff & Christophe Ley & Davy Paindaveine, 2014. "Depth-Based Runs Tests for bivariate Central Symmetry," Working Papers ECARES ECARES 2014-03, ULB -- Universite Libre de Bruxelles.
    9. Steffen Betsch & Bruno Ebner, 2020. "Testing normality via a distributional fixed point property in the Stein characterization," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 105-138, March.
    10. Norbert Henze & Jaco Visagie, 2020. "Testing for normality in any dimension based on a partial differential equation involving the moment generating function," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(5), pages 1109-1136, October.
    11. Sirao Wang & Jiajuan Liang & Min Zhou & Huajun Ye, 2022. "Testing Multivariate Normality Based on F -Representative Points," Mathematics, MDPI, vol. 10(22), pages 1-22, November.
    12. Wanfang Chen & Marc G. Genton, 2023. "Are You All Normal? It Depends!," International Statistical Review, International Statistical Institute, vol. 91(1), pages 114-139, April.
    13. Norbert Henze & María Dolores Jiménez‐Gamero, 2021. "A test for Gaussianity in Hilbert spaces via the empirical characteristic functional," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 406-428, June.
    14. Rainer Dyckerhoff & Christophe Ley & Davy Paindaveine, 2015. "Depth-based runs tests for bivariate central symmetry," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(5), pages 917-941, October.
    15. Sangyeol Lee & Simos G. Meintanis & Minyoung Jo, 2019. "Inferential procedures based on the integrated empirical characteristic function," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(3), pages 357-386, September.
    16. Sreenivasa Rao Jammalamadaka & Emanuele Taufer & György H. Terdik, 2021. "Asymptotic theory for statistics based on cumulant vectors with applications," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 708-728, June.
    17. M. D. Jiménez-Gamero & J. L. Moreno-Rebollo & J. A. Mayor-Gallego, 2018. "On the estimation of the characteristic function in finite populations with applications," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(1), pages 95-121, March.
    18. Klar, B. & Lindner, F. & Meintanis, S.G., 2012. "Specification tests for the error distribution in GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3587-3598.
    19. Philip Dörr & Bruno Ebner & Norbert Henze, 2021. "A new test of multivariate normality by a double estimation in a characterizing PDE," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(3), pages 401-427, April.
    20. Meintanis, Simos G. & Iliopoulos, George, 2008. "Fourier methods for testing multivariate independence," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 1884-1895, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:72:y:2020:i:3:d:10.1007_s10463-019-00707-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.