IDEAS home Printed from https://ideas.repec.org/a/sae/medema/v40y2020i5p619-632.html
   My bibliography  Save this article

How to Address Uncertainty in Health Economic Discrete-Event Simulation Models: An Illustration for Chronic Obstructive Pulmonary Disease

Author

Listed:
  • Isaac Corro Ramos

    (Institute for Medical Technology Assessment (iMTA), Erasmus University Rotterdam, Rotterdam, Zuid-Holland, The Netherlands)

  • Martine Hoogendoorn

    (Institute for Medical Technology Assessment (iMTA), Erasmus University Rotterdam, Rotterdam, Zuid-Holland, The Netherlands)

  • Maureen P. M. H. Rutten-van Mölken

    (Institute for Medical Technology Assessment (iMTA), Erasmus University Rotterdam, Rotterdam, Zuid-Holland, The Netherlands
    Erasmus School of Health Policy & Management (ESHPM), Erasmus University Rotterdam, Rotterdam, The Netherlands)

Abstract

Background . Evaluation of personalized treatment options requires health economic models that include multiple patient characteristics. Patient-level discrete-event simulation (DES) models are deemed appropriate because of their ability to simulate a variety of characteristics and treatment pathways. However, DES models are scarce in the literature, and details about their methods are often missing. Methods . We describe 4 challenges associated with modeling heterogeneity and structural, stochastic, and parameter uncertainty that can be encountered during the development of DES models. We explain why these are important and how to correctly implement them. To illustrate the impact of the modeling choices discussed, we use (results of) a model for chronic obstructive pulmonary disease (COPD) as a case study. Results . The results from the case study showed that, under a correct implementation of the uncertainty in the model, a hypothetical intervention can be deemed as cost-effective. The consequences of incorrect modeling uncertainty included an increase in the incremental cost-effectiveness ratio ranging from 50% to almost a factor of 14, an extended life expectancy of approximately 1.4 years, and an enormously increased uncertainty around the model outcomes. Thus, modeling uncertainty incorrectly can have substantial implications for decision making. Conclusions . This article provides guidance on the implementation of uncertainty in DES models and improves the transparency of reporting uncertainty methods. The COPD case study illustrates the issues described in the article and helps understanding them better. The model R code shows how the uncertainty was implemented. For readers not familiar with R, the model’s pseudo-code can be used to understand how the model works. By doing this, we can help other developers, who are likely to face similar challenges to those described here.

Suggested Citation

  • Isaac Corro Ramos & Martine Hoogendoorn & Maureen P. M. H. Rutten-van Mölken, 2020. "How to Address Uncertainty in Health Economic Discrete-Event Simulation Models: An Illustration for Chronic Obstructive Pulmonary Disease," Medical Decision Making, , vol. 40(5), pages 619-632, July.
  • Handle: RePEc:sae:medema:v:40:y:2020:i:5:p:619-632
    DOI: 10.1177/0272989X20932145
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0272989X20932145
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0272989X20932145?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Irmgard C. Schiller-Frühwirth & Beate Jahn & Marjan Arvandi & Uwe Siebert, 2017. "Cost-Effectiveness Models in Breast Cancer Screening in the General Population: A Systematic Review," Applied Health Economics and Health Policy, Springer, vol. 15(3), pages 333-351, June.
    2. Alan Brennan & Stephen E. Chick & Ruth Davies, 2006. "A taxonomy of model structures for economic evaluation of health technologies," Health Economics, John Wiley & Sons, Ltd., vol. 15(12), pages 1295-1310, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ortiz-Barrios, Miguel & Arias-Fonseca, Sebastián & Ishizaka, Alessio & Barbati, Maria & Avendaño-Collante, Betty & Navarro-Jiménez, Eduardo, 2023. "Artificial intelligence and discrete-event simulation for capacity management of intensive care units during the Covid-19 pandemic: A case study," Journal of Business Research, Elsevier, vol. 160(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heß, Michael (Ed.) & Schlieter, Hannes (Ed.), 2014. "Modellierung im Gesundheitswesen: Tagungsband des Workshops im Rahmen der Modellierung 2014," ICB Research Reports 57, University Duisburg-Essen, Institute for Computer Science and Business Information Systems (ICB).
    2. Ortiz-Barrios, Miguel & Arias-Fonseca, Sebastián & Ishizaka, Alessio & Barbati, Maria & Avendaño-Collante, Betty & Navarro-Jiménez, Eduardo, 2023. "Artificial intelligence and discrete-event simulation for capacity management of intensive care units during the Covid-19 pandemic: A case study," Journal of Business Research, Elsevier, vol. 160(C).
    3. Nikolai Mühlberger & Gaby Sroczynski & Artemisa Gogollari & Beate Jahn & Nora Pashayan & Ewout Steyerberg & Martin Widschwendter & Uwe Siebert, 2021. "Cost effectiveness of breast cancer screening and prevention: a systematic review with a focus on risk-adapted strategies," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 22(8), pages 1311-1344, November.
    4. Bernhard Ultsch & Oliver Damm & Philippe Beutels & Joke Bilcke & Bernd Brüggenjürgen & Andreas Gerber-Grote & Wolfgang Greiner & Germaine Hanquet & Raymond Hutubessy & Mark Jit & Mirjam Knol & Rüdiger, 2016. "Methods for Health Economic Evaluation of Vaccines and Immunization Decision Frameworks: A Consensus Framework from a European Vaccine Economics Community," PharmacoEconomics, Springer, vol. 34(3), pages 227-244, March.
    5. Hossein Haji Ali Afzali & Laura Bojke & Jonathan Karnon, 2018. "Model Structuring for Economic Evaluations of New Health Technologies," PharmacoEconomics, Springer, vol. 36(11), pages 1309-1319, November.
    6. Becky Pennington & Alex Filby & Lesley Owen & Matthew Taylor, 2018. "Smoking Cessation: A Comparison of Two Model Structures," PharmacoEconomics, Springer, vol. 36(9), pages 1101-1112, September.
    7. Gemma E. Shields & Mark Wilberforce & Paul Clarkson & Tracey Farragher & Arpana Verma & Linda M. Davies, 2022. "Factors Limiting Subgroup Analysis in Cost-Effectiveness Analysis and a Call for Transparency," PharmacoEconomics, Springer, vol. 40(2), pages 149-156, February.
    8. Fernando Alarid-Escudero & Richard F. MacLehose & Yadira Peralta & Karen M. Kuntz & Eva A. Enns, 2018. "Nonidentifiability in Model Calibration and Implications for Medical Decision Making," Medical Decision Making, , vol. 38(7), pages 810-821, October.
    9. Koen Degeling & Maarten J. IJzerman & Mariel S. Lavieri & Mark Strong & Hendrik Koffijberg, 2020. "Introduction to Metamodeling for Reducing Computational Burden of Advanced Analyses with Health Economic Models: A Structured Overview of Metamodeling Methods in a 6-Step Application Process," Medical Decision Making, , vol. 40(3), pages 348-363, April.
    10. Peter J. Dodd & Jeff J. Pennington & Liza Bronner Murrison & David W. Dowdy, 2018. "Simple Inclusion of Complex Diagnostic Algorithms in Infectious Disease Models for Economic Evaluation," Medical Decision Making, , vol. 38(8), pages 930-941, November.
    11. Jonathan Karnon & James Stahl & Alan Brennan & J. Jaime Caro & Javier Mar & Jörgen Möller, 2012. "Modeling Using Discrete Event Simulation," Medical Decision Making, , vol. 32(5), pages 701-711, September.
    12. Annika Hoyer & Sophie Kaufmann & Ralph Brinks, 2019. "Risk factors in the illness-death model: Simulation study and the partial differential equation about incidence and prevalence," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-10, December.
    13. Olivier Ethgen & Baudouin Standaert, 2012. "Population–versus Cohort–Based Modelling Approaches," PharmacoEconomics, Springer, vol. 30(3), pages 171-181, March.
    14. Stuart J. Wright & William G. Newman & Katherine Payne, 2019. "Accounting for Capacity Constraints in Economic Evaluations of Precision Medicine: A Systematic Review," PharmacoEconomics, Springer, vol. 37(8), pages 1011-1027, August.
    15. Arielle Anderer & Hamsa Bastani & John Silberholz, 2022. "Adaptive Clinical Trial Designs with Surrogates: When Should We Bother?," Management Science, INFORMS, vol. 68(3), pages 1982-2002, March.
    16. Mehdi Javanbakht & Jesse Fishman & Eoin Moloney & Peter Rydqvist & Amir Ansaripour, 2023. "Early Cost-Effectiveness and Price Threshold Analyses of Resmetirom: An Investigational Treatment for Management of Nonalcoholic Steatohepatitis," PharmacoEconomics - Open, Springer, vol. 7(1), pages 93-110, January.
    17. Eren Demir & David Southern, 2017. "Enabling better management of patients: discrete event simulation combined with the STAR approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(5), pages 577-590, May.
    18. Jen Kruger & Daniel Pollard & Hasan Basarir & Praveen Thokala & Debbie Cooke & Marie Clark & Rod Bond & Simon Heller & Alan Brennan, 2015. "Incorporating Psychological Predictors of Treatment Response into Health Economic Simulation Models," Medical Decision Making, , vol. 35(7), pages 872-887, October.
    19. Oakley, Jeremy E. & Brennan, Alan & Tappenden, Paul & Chilcott, Jim, 2010. "Simulation sample sizes for Monte Carlo partial EVPI calculations," Journal of Health Economics, Elsevier, vol. 29(3), pages 468-477, May.
    20. Eline M. Krijkamp & Fernando Alarid-Escudero & Eva A. Enns & Hawre J. Jalal & M. G. Myriam Hunink & Petros Pechlivanoglou, 2018. "Microsimulation Modeling for Health Decision Sciences Using R: A Tutorial," Medical Decision Making, , vol. 38(3), pages 400-422, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:medema:v:40:y:2020:i:5:p:619-632. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.