IDEAS home Printed from https://ideas.repec.org/a/sae/medema/v32y2012i5p712-721.html
   My bibliography  Save this article

Dynamic Transmission Modeling

Author

Listed:
  • Richard Pitman
  • David Fisman
  • Gregory S. Zaric
  • Maarten Postma
  • Mirjam Kretzschmar
  • John Edmunds
  • Marc Brisson

Abstract

The transmissible nature of communicable diseases is what sets them apart from other diseases modeled by health economists. The probability of a susceptible individual becoming infected at any one point in time (the force of infection) is related to the number of infectious individuals in the population, will change over time, and will feed back into the future force of infection. These nonlinear interactions produce transmission dynamics that require specific consideration when modeling an intervention that has an impact on the transmission of a pathogen. Best practices for designing and building these models are set out in this paper.

Suggested Citation

  • Richard Pitman & David Fisman & Gregory S. Zaric & Maarten Postma & Mirjam Kretzschmar & John Edmunds & Marc Brisson, 2012. "Dynamic Transmission Modeling," Medical Decision Making, , vol. 32(5), pages 712-721, September.
  • Handle: RePEc:sae:medema:v:32:y:2012:i:5:p:712-721
    DOI: 10.1177/0272989X12454578
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0272989X12454578
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0272989X12454578?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Christa Claes & Ralf Reinert & Johann-Matthias Schulenburg, 2009. "Cost effectiveness analysis of heptavalent pneumococcal conjugate vaccine in Germany considering herd immunity effects," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 10(1), pages 25-38, February.
    2. Ellen Brooks-Pollock & Ted Cohen & Megan Murray, 2010. "The Impact of Realistic Age Structure in Simple Models of Tuberculosis Transmission," PLOS ONE, Public Library of Science, vol. 5(1), pages 1-6, January.
    3. Joël Mossong & Niel Hens & Mark Jit & Philippe Beutels & Kari Auranen & Rafael Mikolajczyk & Marco Massari & Stefania Salmaso & Gianpaolo Scalia Tomba & Jacco Wallinga & Janneke Heijne & Malgorzata Sa, 2008. "Social Contacts and Mixing Patterns Relevant to the Spread of Infectious Diseases," PLOS Medicine, Public Library of Science, vol. 5(3), pages 1-1, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. T I Armina Padmasawitri & Gerardus W Frederix & Bachti Alisjahbana & Olaf Klungel & Anke M Hövels, 2018. "Disparities in model-based cost-effectiveness analyses of tuberculosis diagnosis: A systematic review," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-20, May.
    2. Klas Kellerborg & Werner Brouwer & Pieter Baal, 2020. "Costs and benefits of interventions aimed at major infectious disease threats: lessons from the literature," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 21(9), pages 1329-1350, December.
    3. Xiao Zang & Houlin Tang & Jeong Eun Min & Diane Gu & Julio S G Montaner & Zunyou Wu & Bohdan Nosyk, 2016. "Cost-Effectiveness of the ‘One4All’ HIV Linkage Intervention in Guangxi Zhuang Autonomous Region, China," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-17, November.
    4. Jo-An Occhipinti & Danya Rose & Adam Skinner & Daniel Rock & Yun Ju C. Song & Ante Prodan & Sebastian Rosenberg & Louise Freebairn & Catherine Vacher & Ian B. Hickie, 2022. "Sound Decision Making in Uncertain Times: Can Systems Modelling Be Useful for Informing Policy and Planning for Suicide Prevention?," IJERPH, MDPI, vol. 19(3), pages 1-15, January.
    5. Thomas E Delea & Derek Weycker & Mark Atwood & Dion Neame & Fabián P Alvarez & Evelyn Forget & Joanne M Langley & Ayman Chit, 2017. "Cost-effectiveness of alternate strategies for childhood immunization against meningococcal disease with monovalent and quadrivalent conjugate vaccines in Canada," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-17, May.
    6. Ashleigh R Tuite & Ann N Burchell & David N Fisman, 2014. "Cost-Effectiveness of Enhanced Syphilis Screening among HIV-Positive Men Who Have Sex with Men: A Microsimulation Model," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-12, July.
    7. Matthew R Behrend & María-Gloria Basáñez & Jonathan I D Hamley & Travis C Porco & Wilma A Stolk & Martin Walker & Sake J de Vlas & for the NTD Modelling Consortium, 2020. "Modelling for policy: The five principles of the Neglected Tropical Diseases Modelling Consortium," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 14(4), pages 1-17, April.
    8. Stephanie Popping & Sebastiaan J Hullegie & Anne Boerekamps & Bart J A Rijnders & Robert J de Knegt & Jürgen K Rockstroh & Annelies Verbon & Charles A B Boucher & Brooke E Nichols & David A M C van de, 2019. "Early treatment of acute hepatitis C infection is cost-effective in HIV-infected men-who-have-sex-with-men," PLOS ONE, Public Library of Science, vol. 14(1), pages 1-15, January.
    9. Pascal Crépey & Esther Redondo & Javier Díez-Domingo & Raúl Ortiz de Lejarazu & Federico Martinón-Torres & Ángel Gil de Miguel & Juan Luis López-Belmonte & Fabián P Alvarez & Hélène Bricout & Míriam S, 2020. "From trivalent to quadrivalent influenza vaccines: Public health and economic burden for different immunization strategies in Spain," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-19, May.
    10. Beate Jahn & Sarah Friedrich & Joachim Behnke & Joachim Engel & Ursula Garczarek & Ralf Münnich & Markus Pauly & Adalbert Wilhelm & Olaf Wolkenhauer & Markus Zwick & Uwe Siebert & Tim Friede, 2022. "On the role of data, statistics and decisions in a pandemic," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(3), pages 349-382, September.
    11. Richard E Nelson & Makoto Jones & Molly Leecaster & Matthew H Samore & William Ray & Angela Huttner & Benedikt Huttner & Karim Khader & Vanessa W Stevens & Dale Gerding & Marin L Schweizer & Michael A, 2016. "An Economic Analysis of Strategies to Control Clostridium Difficile Transmission and Infection Using an Agent-Based Simulation Model," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-16, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ichino, Andrea & Favero, Carlo A. & Rustichini, Aldo, 2020. "Restarting the economy while saving lives under Covid-19," CEPR Discussion Papers 14664, C.E.P.R. Discussion Papers.
    2. M. Hashem Pesaran & Cynthia Fan Yang, 2022. "Matching theory and evidence on Covid‐19 using a stochastic network SIR model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1204-1229, September.
    3. Wei Zhong, 2017. "Simulating influenza pandemic dynamics with public risk communication and individual responsive behavior," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 475-495, December.
    4. Houštecká, Anna & Koh, Dongya & Santaeulàlia-Llopis, Raül, 2021. "Contagion at work: Occupations, industries and human contact," Journal of Public Economics, Elsevier, vol. 200(C).
    5. Kuchler, Theresa & Russel, Dominic & Stroebel, Johannes, 2022. "JUE Insight: The geographic spread of COVID-19 correlates with the structure of social networks as measured by Facebook," Journal of Urban Economics, Elsevier, vol. 127(C).
    6. John M Drake & Tobias S Brett & Shiyang Chen & Bogdan I Epureanu & Matthew J Ferrari & Éric Marty & Paige B Miller & Eamon B O’Dea & Suzanne M O’Regan & Andrew W Park & Pejman Rohani, 2019. "The statistics of epidemic transitions," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-14, May.
    7. S. M. Niaz Arifin & Christoph Zimmer & Caroline Trotter & Anaïs Colombini & Fati Sidikou & F. Marc LaForce & Ted Cohen & Reza Yaesoubi, 2019. "Cost-Effectiveness of Alternative Uses of Polyvalent Meningococcal Vaccines in Niger: An Agent-Based Transmission Modeling Study," Medical Decision Making, , vol. 39(5), pages 553-567, July.
    8. Bisin, Alberto & Moro, Andrea, 2022. "Spatial‐SIR with network structure and behavior: Lockdown rules and the Lucas critique," Journal of Economic Behavior & Organization, Elsevier, vol. 198(C), pages 370-388.
    9. Mirjam Kretzschmar & Rafael T Mikolajczyk, 2009. "Contact Profiles in Eight European Countries and Implications for Modelling the Spread of Airborne Infectious Diseases," PLOS ONE, Public Library of Science, vol. 4(6), pages 1-8, June.
    10. Elisabetta De Cao & Alessia Melegaro & Rogier Klok & Maarten Postma, 2014. "Optimising Assessments of the Epidemiological Impact in the Netherlands of Paediatric Immunisation with 13-Valent Pneumococcal Conjugate Vaccine Using Dynamic Transmission Modelling," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-9, April.
    11. Gillis, Melissa & Urban, Ryley & Saif, Ahmed & Kamal, Noreen & Murphy, Matthew, 2021. "A simulation–optimization framework for optimizing response strategies to epidemics," Operations Research Perspectives, Elsevier, vol. 8(C).
    12. Wiriya Mahikul & Somkid Kripattanapong & Piya Hanvoravongchai & Aronrag Meeyai & Sopon Iamsirithaworn & Prasert Auewarakul & Wirichada Pan-ngum, 2020. "Contact Mixing Patterns and Population Movement among Migrant Workers in an Urban Setting in Thailand," IJERPH, MDPI, vol. 17(7), pages 1-11, March.
    13. Valentina Marziano & Giorgio Guzzetta & Alessia Mammone & Flavia Riccardo & Piero Poletti & Filippo Trentini & Mattia Manica & Andrea Siddu & Antonino Bella & Paola Stefanelli & Patrizio Pezzotti & Ma, 2021. "The effect of COVID-19 vaccination in Italy and perspectives for living with the virus," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    14. Fatima-Zahra Jaouimaa & Daniel Dempsey & Suzanne Van Osch & Stephen Kinsella & Kevin Burke & Jason Wyse & James Sweeney, 2021. "An age-structured SEIR model for COVID-19 incidence in Dublin, Ireland with framework for evaluating health intervention cost," PLOS ONE, Public Library of Science, vol. 16(12), pages 1-25, December.
    15. Nikolaos P. Rachaniotis & Thomas K. Dasaklis & Filippos Fotopoulos & Platon Tinios, 2021. "A Two-Phase Stochastic Dynamic Model for COVID-19 Mid-Term Policy Recommendations in Greece: A Pathway towards Mass Vaccination," IJERPH, MDPI, vol. 18(5), pages 1-21, March.
    16. Hammoumi, Aayah & Qesmi, Redouane, 2020. "Impact assessment of containment measure against COVID-19 spread in Morocco," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    17. Thomas Ash & Antonio M. Bento & Daniel Kaffine & Akhil Rao & Ana I. Bento, 2022. "Disease-economy trade-offs under alternative epidemic control strategies," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    18. Sudhir Venkatesan & Jonathan S Nguyen-Van-Tam & Peer-Olaf Siebers, 2019. "A novel framework for evaluating the impact of individual decision-making on public health outcomes and its potential application to study antiviral treatment collection during an influenza pandemic," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-14, October.
    19. Marina Azzimonti-Renzo & Alessandra Fogli & Fabrizio Perri & Mark Ponder, 2020. "Pandemic Control in ECON-EPI Networks," Staff Report 609, Federal Reserve Bank of Minneapolis.
    20. Stefano Guarino & Enrico Mastrostefano & Massimo Bernaschi & Alessandro Celestini & Marco Cianfriglia & Davide Torre & Lena Rebecca Zastrow, 2021. "Inferring Urban Social Networks from Publicly Available Data," Future Internet, MDPI, vol. 13(5), pages 1-45, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:medema:v:32:y:2012:i:5:p:712-721. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.