IDEAS home Printed from https://ideas.repec.org/a/sae/envirb/v49y2022i2p566-584.html
   My bibliography  Save this article

A prediction model for atmospheric pollution reduction from urban traffic

Author

Listed:
  • Abdelfettah Laouzai

    (University of Science and Technology Houari-Boumediene, Algeria
    SONATRACH-Direction Centrale Recherche et Développement, Algérie)

  • Rachid Ouafi

    (University of Science and Technology Houari-Boumediene, Algeria)

Abstract

In order to reduce the atmospheric pollution in urban areas, an enhanced approach is proposed in this paper for the traffic congestion analysis. The approach is formulated as bi-level optimization program considering additional constraints in the traffic assignment problem. To respect the required eco-friendly threshold constraint, the travel demand between several origin–destination pairs was categorized in two classes: old polluting cars and modern (less) nonpolluting cars. The validity of the formulation was verified by optimality conditions. Two network examples are discussed to explain the properties and advantages of the suggested technique. It is found that for the both examples, the proposed optimal solution displays better results as compared to the common user equilibrium route choice policies. As a result, the enhanced approach leads to traffic network congestion relief with minimum air pollution and maximum use of routes network.

Suggested Citation

  • Abdelfettah Laouzai & Rachid Ouafi, 2022. "A prediction model for atmospheric pollution reduction from urban traffic," Environment and Planning B, , vol. 49(2), pages 566-584, February.
  • Handle: RePEc:sae:envirb:v:49:y:2022:i:2:p:566-584
    DOI: 10.1177/23998083211005776
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/23998083211005776
    Download Restriction: no

    File URL: https://libkey.io/10.1177/23998083211005776?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nie, Yu (Marco), 2010. "A class of bush-based algorithms for the traffic assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 44(1), pages 73-89, January.
    2. Christopher R. Knittel & Douglas L. Miller & Nicholas J. Sanders, 2016. "Caution, Drivers! Children Present: Traffic, Pollution, and Infant Health," The Review of Economics and Statistics, MIT Press, vol. 98(2), pages 350-366, May.
    3. Guensler, Randall & Sperling, Daniel, 1994. "Congestion Pricing and Motor Vehicle Emissions: An Initial Review," University of California Transportation Center, Working Papers qt1hf9z609, University of California Transportation Center.
    4. Larsson, Torbjörn & Patriksson, Michael, 1999. "Side constrained traffic equilibrium models-- analysis, computation and applications," Transportation Research Part B: Methodological, Elsevier, vol. 33(4), pages 233-264, May.
    5. W. Y. Szeto & Xiaoqing Jaber & S. C. Wong, 2012. "Road Network Equilibrium Approaches to Environmental Sustainability," Transport Reviews, Taylor & Francis Journals, vol. 32(4), pages 491-518, April.
    6. Nie, Yu & Zhang, H. M. & Lee, Der-Horng, 2004. "Models and algorithms for the traffic assignment problem with link capacity constraints," Transportation Research Part B: Methodological, Elsevier, vol. 38(4), pages 285-312, May.
    7. Séverine Deguen & Claire Petit & Angélique Delbarre & Wahida Kihal & Cindy Padilla & Tarik Benmarhnia & Annabelle Lapostolle & Pierre Chauvin & Denis Zmirou-Navier, 2015. "Neighbourhood Characteristics and Long-Term Air Pollution Levels Modify the Association between the Short-Term Nitrogen Dioxide Concentrations and All-Cause Mortality in Paris," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-14, July.
    8. Saeed Asadi Bagloee & Mohsen Asadi, 2019. "Side constrained traffic assignment problem for multiclass flow," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 35(1), pages 108-131.
    9. H. M. Abdul Aziz & Satish V. Ukkusuri & Xianyuan Zhan, 2017. "Determining the Impact of Personal Mobility Carbon Allowance Schemes in Transportation Networks," Networks and Spatial Economics, Springer, vol. 17(2), pages 505-545, June.
    10. HE, Ling-Yun & QIU, Lu-Yi, 2016. "Transport demand, harmful emissions, environment and health co-benefits in China," Energy Policy, Elsevier, vol. 97(C), pages 267-275.
    11. Marguerite Frank & Philip Wolfe, 1956. "An algorithm for quadratic programming," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 3(1‐2), pages 95-110, March.
    12. Larsson, Torbjörn & Patriksson, Michael, 1995. "An augmented lagrangean dual algorithm for link capacity side constrained traffic assignment problems," Transportation Research Part B: Methodological, Elsevier, vol. 29(6), pages 433-455, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xin Lin & Chris M. J. Tampère & Stef Proost, 2020. "Optimizing Traffic System Performance with Environmental Constraints: Tolls and/or Additional Delays," Networks and Spatial Economics, Springer, vol. 20(1), pages 137-177, March.
    2. Chi Xie & Xing Wu & Stephen Boyles, 2019. "Traffic equilibrium with a continuously distributed bound on travel weights: the rise of range anxiety and mental account," Annals of Operations Research, Springer, vol. 273(1), pages 279-310, February.
    3. Seungkyu Ryu & Anthony Chen & Xiangdong Xu & Keechoo Choi, 2014. "A Dual Approach for Solving the Combined Distribution and Assignment Problem with Link Capacity Constraints," Networks and Spatial Economics, Springer, vol. 14(2), pages 245-270, June.
    4. Maëlle Zimmermann & Emma Frejinger & Patrice Marcotte, 2021. "A Strategic Markovian Traffic Equilibrium Model for Capacitated Networks," Transportation Science, INFORMS, vol. 55(3), pages 574-591, May.
    5. Raadsen, Mark P.H. & Bliemer, Michiel C.J., 2023. "General solution scheme for the static link transmission model," Transportation Research Part B: Methodological, Elsevier, vol. 169(C), pages 108-135.
    6. Rui Yao & Shlomo Bekhor, 2023. "A general equilibrium model for multi-passenger ridesharing systems with stable matching," Papers 2303.16595, arXiv.org, revised Dec 2023.
    7. Yao, Rui & Bekhor, Shlomo, 2023. "A general equilibrium model for multi-passenger ridesharing systems with stable matching," Transportation Research Part B: Methodological, Elsevier, vol. 175(C).
    8. Meng Li & Guowei Hua & Haijun Huang, 2018. "A Multi-Modal Route Choice Model with Ridesharing and Public Transit," Sustainability, MDPI, vol. 10(11), pages 1-14, November.
    9. Chou, Chang-Chi & Chiang, Wen-Chu & Chen, Albert Y., 2022. "Emergency medical response in mass casualty incidents considering the traffic congestions in proximity on-site and hospital delays," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    10. Babak Javani & Abbas Babazadeh, 2020. "Path-Based Dynamic User Equilibrium Model with Applications to Strategic Transportation Planning," Networks and Spatial Economics, Springer, vol. 20(2), pages 329-366, June.
    11. Bagloee, Saeed Asadi & Sarvi, Majid & Wolshon, Brian & Dixit, Vinayak, 2017. "Identifying critical disruption scenarios and a global robustness index tailored to real life road networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 98(C), pages 60-81.
    12. Michael W. Levin & Melissa Duell & S. Travis Waller, 2020. "Arrival Time Reliability in Strategic User Equilibrium," Networks and Spatial Economics, Springer, vol. 20(3), pages 803-831, September.
    13. Xiang Zhang & David Rey & S. Travis Waller & Nathan Chen, 2019. "Range-Constrained Traffic Assignment with Multi-Modal Recharge for Electric Vehicles," Networks and Spatial Economics, Springer, vol. 19(2), pages 633-668, June.
    14. José R. Correa & Andreas S. Schulz & Nicolás E. Stier-Moses, 2004. "Selfish Routing in Capacitated Networks," Mathematics of Operations Research, INFORMS, vol. 29(4), pages 961-976, November.
    15. Wu, Xin & Nie, Lei & Xu, Meng & Yan, Fei, 2018. "A perishable food supply chain problem considering demand uncertainty and time deadline constraints: Modeling and application to a high-speed railway catering service," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 111(C), pages 186-209.
    16. Jahn, Olaf & Möhring, Rolf & Schulz, Andreas & Stier Moses, Nicolás, 2004. "System-Optimal Routing of Traffic Flows with User Constraints in Networks with Congestion," Working papers 4394-02, Massachusetts Institute of Technology (MIT), Sloan School of Management.
    17. Ren-Yong Guo & Hai Yang & Hai-Jun Huang & Zhijia Tan, 2016. "Day-to-Day Flow Dynamics and Congestion Control," Transportation Science, INFORMS, vol. 50(3), pages 982-997, August.
    18. Zhaoqi Zang & Xiangdong Xu & Anthony Chen & Chao Yang, 2022. "Modeling the α-max capacity of transportation networks: a single-level mathematical programming formulation," Transportation, Springer, vol. 49(4), pages 1211-1243, August.
    19. Li, Xinyan & Xie, Chi & Bao, Zhaoyao, 2022. "A multimodal multicommodity network equilibrium model with service capacity and bottleneck congestion for China-Europe containerized freight flows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    20. Yildirim, Mehmet Bayram & Hearn, Donald W., 2005. "A first best toll pricing framework for variable demand traffic assignment problems," Transportation Research Part B: Methodological, Elsevier, vol. 39(8), pages 659-678, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:envirb:v:49:y:2022:i:2:p:566-584. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.