IDEAS home Printed from https://ideas.repec.org/a/sae/envirb/v48y2021i5p1011-1024.html
   My bibliography  Save this article

Spatio-temporal dynamics of flood exposure in Shenzhen from present to future

Author

Listed:
  • Gizem Mestav Sarica
  • Tinger Zhu
  • Wei Jian

    (Nanyang Technological University, Singapore)

  • Edmond Yat-Man Lo
  • Tso-Chien Pan

    (Nanyang Technological University, Singapore;)

Abstract

The Pearl River Delta metropolitan region is one of the most densely urbanized megapolises worldwide with high exposure to weather-related disasters such as storms, storm surges and river floods. Shenzhen megacity has been the fastest growing city in the Pearl River Delta region with a significant increase of resident population from 0.32 million in 1980 to 13.03 million in 2018. Being a flood-prone city, Shenzhen’s rapid urbanization has further exacerbated potential flood losses and forthcoming risk. Thus, evaluating the changes in its exposure from present to future is essential for flood risk assessment, mitigation and management purposes. The main objective of this study is to present a methodology to assess the spatio-temporal dynamics of flood exposure from present to future using high-resolution and open-source data with a particular focus on the built-up area. To achieve this, the SLEUTH model, a cellular automata-based urban growth model, was employed for predicting the built-up area in Shenzhen in 2030. An almost threefold increase was observed in total built-up area from 421 km 2 in 1995 to 1166 km 2 in 2030, with the 2016 built-up area being 858 km 2 . Built-up areas, both present (2016) and projected (2030), were then used as the land cover input for flood hazard assessment based on a fuzzy comprehensive evaluation model, which classified the flood hazard into five levels. The analysis indicates that the built-up area subjected to the two highest flood hazard levels will increase by almost 88% (212 km 2 ) from present to future. The approach presented here can be leveraged by policymakers to identify critical areas that should be prioritized for flood mitigation and protection actions to minimize potential losses.

Suggested Citation

  • Gizem Mestav Sarica & Tinger Zhu & Wei Jian & Edmond Yat-Man Lo & Tso-Chien Pan, 2021. "Spatio-temporal dynamics of flood exposure in Shenzhen from present to future," Environment and Planning B, , vol. 48(5), pages 1011-1024, June.
  • Handle: RePEc:sae:envirb:v:48:y:2021:i:5:p:1011-1024
    DOI: 10.1177/2399808321991540
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/2399808321991540
    Download Restriction: no

    File URL: https://libkey.io/10.1177/2399808321991540?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kraemer, Roland & Prishchepov, Alexander V & Müller, Daniel & Kuemmerle, Tobias & Radeloff, Volker C & Dara, Andrey & Terekhov, Alexey & Frühauf, Manfred, 2015. "Long-term agricultural land-cover change and potential for cropland expansion in the former Virgin Lands area of Kazakhstan," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 10(5), pages 1-17.
    2. Stephane Hallegatte & Colin Green & Robert J. Nicholls & Jan Corfee-Morlot, 2013. "Future flood losses in major coastal cities," Nature Climate Change, Nature, vol. 3(9), pages 802-806, September.
    3. Wei Jian & Shanshan Li & Chengguang Lai & Zhaoli Wang & Xiangju Cheng & Edmond Yat-Man Lo & Tso-Chien Pan, 2021. "Evaluating pluvial flood hazard for highly urbanised cities: a case study of the Pearl River Delta Region in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(2), pages 1691-1719, January.
    4. Chengguang Lai & Xiaohong Chen & Xiaoyu Chen & Zhaoli Wang & Xushu Wu & Shiwei Zhao, 2015. "A fuzzy comprehensive evaluation model for flood risk based on the combination weight of game theory," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 1243-1259, June.
    5. Ismail Ercument Ayazli, 2019. "Monitoring of Urban Growth with Improved Model Accuracy by Statistical Methods," Sustainability, MDPI, vol. 11(20), pages 1-14, October.
    6. Yoram Wind & Thomas L. Saaty, 1980. "Marketing Applications of the Analytic Hierarchy Process," Management Science, INFORMS, vol. 26(7), pages 641-658, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei Jian & Shanshan Li & Chengguang Lai & Zhaoli Wang & Xiangju Cheng & Edmond Yat-Man Lo & Tso-Chien Pan, 2021. "Evaluating pluvial flood hazard for highly urbanised cities: a case study of the Pearl River Delta Region in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(2), pages 1691-1719, January.
    2. Chengguang Lai & Xiaohong Chen & Xiaoyu Chen & Zhaoli Wang & Xushu Wu & Shiwei Zhao, 2015. "A fuzzy comprehensive evaluation model for flood risk based on the combination weight of game theory," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 1243-1259, June.
    3. Derya Ozturk & Nergiz Uzel-Gunini, 2022. "Investigation of the effects of hybrid modeling approaches, factor standardization, and categorical mapping on the performance of landslide susceptibility mapping in Van, Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 2571-2604, December.
    4. Chengguang Lai & Xiaohong Chen & Zhaoli Wang & Haijun Yu & Xiaoyan Bai, 2020. "Flood Risk Assessment and Regionalization from Past and Future Perspectives at Basin Scale," Risk Analysis, John Wiley & Sons, vol. 40(7), pages 1399-1417, July.
    5. Abinash Bhattachan & Matthew D. Jurjonas & Priscilla R. Morris & Paul J. Taillie & Lindsey S. Smart & Ryan E. Emanuel & Erin L. Seekamp, 2019. "Linking residential saltwater intrusion risk perceptions to physical exposure of climate change impacts in rural coastal communities of North Carolina," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(3), pages 1277-1295, July.
    6. Denis Maragno & Michele Dalla Fontana & Francesco Musco, 2020. "Mapping Heat Stress Vulnerability and Risk Assessment at the Neighborhood Scale to Drive Urban Adaptation Planning," Sustainability, MDPI, vol. 12(3), pages 1-16, February.
    7. Banai, Reza, 2010. "Evaluation of land use-transportation systems with the Analytic Network Process," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 3(1), pages 85-112.
    8. Shanshan Hu & Xiangjun Cheng & Demin Zhou & Hong Zhang, 2017. "GIS-based flood risk assessment in suburban areas: a case study of the Fangshan District, Beijing," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1525-1543, July.
    9. Fatih Yiğit & Şakir Esnaf, 2021. "A new Fuzzy C-Means and AHP-based three-phased approach for multiple criteria ABC inventory classification," Journal of Intelligent Manufacturing, Springer, vol. 32(6), pages 1517-1528, August.
    10. Rachele Corticelli & Margherita Pazzini & Cecilia Mazzoli & Claudio Lantieri & Annarita Ferrante & Valeria Vignali, 2022. "Urban Regeneration and Soft Mobility: The Case Study of the Rimini Canal Port in Italy," Sustainability, MDPI, vol. 14(21), pages 1-27, November.
    11. Lin, Sheng-Hau & Zhao, Xiaofeng & Wu, Jiuxing & Liang, Fachao & Li, Jia-Hsuan & Lai, Ren-Ji & Hsieh, Jing-Chzi & Tzeng, Gwo-Hshiung, 2021. "An evaluation framework for developing green infrastructure by using a new hybrid multiple attribute decision-making model for promoting environmental sustainability," Socio-Economic Planning Sciences, Elsevier, vol. 75(C).
    12. Pishchulov, Grigory & Trautrims, Alexander & Chesney, Thomas & Gold, Stefan & Schwab, Leila, 2019. "The Voting Analytic Hierarchy Process revisited: A revised method with application to sustainable supplier selection," International Journal of Production Economics, Elsevier, vol. 211(C), pages 166-179.
    13. Seung-Jin Han & Won-Jae Lee & So-Hee Kim & Sang-Hoon Yoon & Hyunwoong Pyun, 2022. "Assessing Expected Long-term Benefits for the Olympic Games: Delphi-AHP Approach from Korean Olympic Experts," SAGE Open, , vol. 12(4), pages 21582440221, December.
    14. Denys Yemshanov & Frank H. Koch & Yakov Ben‐Haim & Marla Downing & Frank Sapio & Marty Siltanen, 2013. "A New Multicriteria Risk Mapping Approach Based on a Multiattribute Frontier Concept," Risk Analysis, John Wiley & Sons, vol. 33(9), pages 1694-1709, September.
    15. Ping Lan & Li Guo & Yaling Zhang & Guanghua Qin & Xiaodong Li & Carlos R. Mello & Elizabeth W. Boyer & Yehui Zhang & Bihang Fan, 2024. "Updating probable maximum precipitation for Hong Kong under intensifying extreme precipitation events," Climatic Change, Springer, vol. 177(2), pages 1-20, February.
    16. Seyed Rakhshan & Ali Kamyad & Sohrab Effati, 2015. "Ranking decision-making units by using combination of analytical hierarchical process method and Tchebycheff model in data envelopment analysis," Annals of Operations Research, Springer, vol. 226(1), pages 505-525, March.
    17. V. Srinivasan & G. Shainesh & Anand K. Sharma, 2015. "An approach to prioritize customer-based, cost-effective service enhancements," The Service Industries Journal, Taylor & Francis Journals, vol. 35(14), pages 747-762, October.
    18. Mónica García-Melón & Blanca Pérez-Gladish & Tomás Gómez-Navarro & Paz Mendez-Rodriguez, 2016. "Assessing mutual funds’ corporate social responsibility: a multistakeholder-AHP based methodology," Annals of Operations Research, Springer, vol. 244(2), pages 475-503, September.
    19. Allan Beltrán & David Maddison & Robert J. R. Elliott, 2018. "Assessing the Economic Benefits of Flood Defenses: A Repeat‐Sales Approach," Risk Analysis, John Wiley & Sons, vol. 38(11), pages 2340-2367, November.
    20. Jitendar Kumar Khatri & Bhimaraya Metri, 2016. "SWOT-AHP Approach for Sustainable Manufacturing Strategy Selection: A Case of Indian SME," Global Business Review, International Management Institute, vol. 17(5), pages 1211-1226, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:envirb:v:48:y:2021:i:5:p:1011-1024. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.