IDEAS home Printed from https://ideas.repec.org/a/sae/envirb/v34y2007i5p905-924.html
   My bibliography  Save this article

The Structure of Interurban Traffic: A Weighted Network Analysis

Author

Listed:
  • Andrea De Montis

    (Dipartimento di Ingegneria del Territorio, Sezione Construzioni e Infrastrutture, Universita degli Studi di Sassari, Via De Nicola, 07100 Sassari, Italy)

  • Marc Barthélemy

    (School of Informatics, Center for Biocomplexity and Department of Physics, Indiana University, Bloomington, USA
    CEA-DIF, Département de Physique Théorique et Appliquée, 91680 Bruyères-le-Châtel, France)

  • Alessandro Chessa

    (Dipartimento di Fisica, Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy)

  • Alessandro Vespignani

    (School of Informatics, Center for Biocomplexity and Department of Physics, Indiana University, Bloomington, IN 47408, USA)

Abstract

We study the structure of the network representing the interurban commuting traffic of the Sardinia region, Italy, which amounts to 375 municipalities and 1600 000 inhabitants. We use a weighted network representation in which vertices correspond to towns and the edges correspond to the actual commuting flows among those towns. We characterize quantitatively both the topological and weighted properties of the resulting network. Interestingly, the statistical properties of the commuting traffic exhibit complex features and nontrivial relations with the underlying topology. We characterize quantitatively the traffic backbone among large cities and we give evidence for a very high heterogeneity of the commuter flows around large cities. We also discuss the interplay between the topological and dynamical properties of the network as well as their relation with sociodemographic variables such as population and monthly income. This analysis may be useful at various stages in environmental planning and provides analytical tools for a wide spectrum of applications ranging from impact evaluation to decision making and planning support.

Suggested Citation

  • Andrea De Montis & Marc Barthélemy & Alessandro Chessa & Alessandro Vespignani, 2007. "The Structure of Interurban Traffic: A Weighted Network Analysis," Environment and Planning B, , vol. 34(5), pages 905-924, October.
  • Handle: RePEc:sae:envirb:v:34:y:2007:i:5:p:905-924
    DOI: 10.1068/b32128
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1068/b32128
    Download Restriction: no

    File URL: https://libkey.io/10.1068/b32128?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Laura A. Schintler & Sean P. Gorman & Aura Reggiani & Roberto Patuelli & Andy Gillespie & Peter Nijkamp & Jonathan Rutherford, 2004. "Complex Network Phenomena in Telecommunication Systems," Tinbergen Institute Discussion Papers 04-118/3, Tinbergen Institute.
    2. Dorogovtsev, S.N. & Mendes, J.F.F., 2003. "Evolution of Networks: From Biological Nets to the Internet and WWW," OUP Catalogue, Oxford University Press, number 9780198515906.
    3. Latora, Vito & Marchiori, Massimo, 2002. "Is the Boston subway a small-world network?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 314(1), pages 109-113.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amedeo Ganciu & Mara Balestrieri & Cristina Imbroglini & Fabrizio Toppetti, 2018. "Dynamics of Metropolitan Landscapes and Daily Mobility Flows in the Italian Context. An Analysis Based on the Theory of Graphs," Sustainability, MDPI, vol. 10(3), pages 1-27, February.
    2. Liu, Xi & Gong, Li & Gong, Yongxi & Liu, Yu, 2015. "Revealing travel patterns and city structure with taxi trip data," Journal of Transport Geography, Elsevier, vol. 43(C), pages 78-90.
    3. Soh, Harold & Lim, Sonja & Zhang, Tianyou & Fu, Xiuju & Lee, Gary Kee Khoon & Hung, Terence Gih Guang & Di, Pan & Prakasam, Silvester & Wong, Limsoon, 2010. "Weighted complex network analysis of travel routes on the Singapore public transportation system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(24), pages 5852-5863.
    4. Zhu, Guohun & Corcoran, Jonathan & Shyy, Paul & Pileggi, Salvatore Flavio & Hunter, Jane, 2018. "Analysing journey-to-work data using complex networks," Journal of Transport Geography, Elsevier, vol. 66(C), pages 65-79.
    5. Hu, Baoyu & Feng, Shumin & Li, Jinyang & Zhao, Hu, 2018. "Statistical analysis of passenger-crowding in bus transport network of Harbin," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 426-438.
    6. Wang, Shiguang & Zheng, Lili & Yu, Dexin, 2017. "The improved degree of urban road traffic network: A case study of Xiamen, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 256-264.
    7. Lenormand, Maxime & Bassolas, Aleix & Ramasco, José J., 2016. "Systematic comparison of trip distribution laws and models," Journal of Transport Geography, Elsevier, vol. 51(C), pages 158-169.
    8. Feng, Jia & Li, Xiamiao & Mao, Baohua & Xu, Qi & Bai, Yun, 2017. "Weighted complex network analysis of the Beijing subway system: Train and passenger flows," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 474(C), pages 213-223.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marc Barthélémy & Michele Campagna & Alessandro Chessa & Andrea De Montis & Alessandro Vespignani, 2005. "Emergent topological and dynamical properties of a real inter-municipal commuting network - perspectives for policy-making and planning," ERSA conference papers ersa05p607, European Regional Science Association.
    2. De Montis, Andrea & Chessa, Alessandro & Campagna, Michele & Caschili, Simone & Deplano, Giancarlo, 2010. "Modeling commuting systems through a complex network analysis: A study of the Italian islands of Sardinia and Sicily," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 2(3), pages 39-55.
    3. Ya-Chun Gao & Zong-Wen Wei & Bing-Hong Wang, 2013. "Dynamic Evolution Of Financial Network And Its Relation To Economic Crises," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 24(02), pages 1-10.
    4. Zhou, Wei-Xing & Jiang, Zhi-Qiang & Sornette, Didier, 2007. "Exploring self-similarity of complex cellular networks: The edge-covering method with simulated annealing and log-periodic sampling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 375(2), pages 741-752.
    5. Bezsudnov, I.V. & Snarskii, A.A., 2014. "From the time series to the complex networks: The parametric natural visibility graph," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 53-60.
    6. Mark S. Handcock & Adrian E. Raftery & Jeremy M. Tantrum, 2007. "Model‐based clustering for social networks," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(2), pages 301-354, March.
    7. Soh, Harold & Lim, Sonja & Zhang, Tianyou & Fu, Xiuju & Lee, Gary Kee Khoon & Hung, Terence Gih Guang & Di, Pan & Prakasam, Silvester & Wong, Limsoon, 2010. "Weighted complex network analysis of travel routes on the Singapore public transportation system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(24), pages 5852-5863.
    8. Wang, Qingyun & Duan, Zhisheng & Chen, Guanrong & Feng, Zhaosheng, 2008. "Synchronization in a class of weighted complex networks with coupling delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(22), pages 5616-5622.
    9. F. W. S. Lima, 2015. "Evolution of egoism on semi-directed and undirected Barabási-Albert networks," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 26(12), pages 1-9.
    10. G. Ghoshal & M. E.J. Newman, 2007. "Growing distributed networks with arbitrary degree distributions," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 58(2), pages 175-184, July.
    11. Chang, Y.F. & Han, S.K. & Wang, X.D., 2018. "The way to uncover community structure with core and diversity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 111-119.
    12. Chakrabarti, Anindya S., 2015. "Stochastic Lotka-Volterra equations: A model of lagged diffusion of technology in an interconnected world," IIMA Working Papers WP2015-08-05, Indian Institute of Management Ahmedabad, Research and Publication Department.
    13. Roth, Camille, 2007. "Empiricism for descriptive social network models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 378(1), pages 53-58.
    14. Douglas R. White & Jason Owen-Smith & James Moody & Walter W. Powell, 2004. "Networks, Fields and Organizations: Micro-Dynamics, Scale and Cohesive Embeddings," Computational and Mathematical Organization Theory, Springer, vol. 10(1), pages 95-117, May.
    15. L. da F. Costa & L. E.C. da Rocha, 2006. "A generalized approach to complex networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 50(1), pages 237-242, March.
    16. Perc, Matjaž, 2010. "Zipf’s law and log-normal distributions in measures of scientific output across fields and institutions: 40 years of Slovenia’s research as an example," Journal of Informetrics, Elsevier, vol. 4(3), pages 358-364.
    17. Xueguo Xu & Chen Xu & Wenxin Zhang, 2022. "Research on the Destruction Resistance of Giant Urban Rail Transit Network from the Perspective of Vulnerability," Sustainability, MDPI, vol. 14(12), pages 1-26, June.
    18. Florian Blöchl & Fabian J. Theis & Fernando Vega-Redondo & Eric O'N. Fisher, 2010. "Which Sectors of a Modern Economy are most Central?," CESifo Working Paper Series 3175, CESifo.
    19. M. C. González & A. O. Sousa & H. J. Herrmann, 2004. "Opinion Formation On A Deterministic Pseudo-Fractal Network," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 15(01), pages 45-57.
    20. Zhou, Yaoming & Wang, Junwei, 2018. "Efficiency of complex networks under failures and attacks: A percolation approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 658-664.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:envirb:v:34:y:2007:i:5:p:905-924. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.