IDEAS home Printed from https://ideas.repec.org/a/sae/envira/v44y2012i6p1443-1458.html
   My bibliography  Save this article

Mining Sacred Space: Law's Enactment of Competing Ontologies in the American West

Author

Listed:
  • Melinda Harm Benson

    (Department of Geography, 1 University of New Mexico, Albuquerque, NM 87131-0001, USA)

Abstract

Current controversies regarding uranium mining in the American West are about more than competing legal requirements; they are about competing conceptualizations of space that are grounded in different ontologies. Laws—in this case the General Mining Law of 1872 and the National Historic Preservation Act of 1966—play a performative role by enacting and materializing these ontologies. The occupation of New Mexico's Mt. Taylor both by ‘old’ and by ‘new’ legal forms provides an opportunity to examine their corresponding spatiality. The National Historic Preservation Act, in particular, creates an interesting ‘new space’ that may have the capacity to challenge Eurocentric notions of ownership.

Suggested Citation

  • Melinda Harm Benson, 2012. "Mining Sacred Space: Law's Enactment of Competing Ontologies in the American West," Environment and Planning A, , vol. 44(6), pages 1443-1458, June.
  • Handle: RePEc:sae:envira:v:44:y:2012:i:6:p:1443-1458
    DOI: 10.1068/a44579
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1068/a44579
    Download Restriction: no

    File URL: https://libkey.io/10.1068/a44579?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bang, Guri, 2010. "Energy security and climate change concerns: Triggers for energy policy change in the United States?," Energy Policy, Elsevier, vol. 38(4), pages 1645-1653, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Visschers, Vivianne H.M. & Keller, Carmen & Siegrist, Michael, 2011. "Climate change benefits and energy supply benefits as determinants of acceptance of nuclear power stations: Investigating an explanatory model," Energy Policy, Elsevier, vol. 39(6), pages 3621-3629, June.
    2. Wang, Kai-Hua & Su, Chi-Wei & Lobonţ, Oana-Ramona & Umar, Muhammad, 2021. "Whether crude oil dependence and CO2 emissions influence military expenditure in net oil importing countries?," Energy Policy, Elsevier, vol. 153(C).
    3. Jacqueline Noga & Gregor Wolbring, 2014. "The Oil and Gas Discourse from the Perspective of the Canadian and Albertan Governments, Non-Governmental Organizations and the Oil and Gas Industry," Energies, MDPI, vol. 7(1), pages 1-20, January.
    4. Arndt, Christoph, 2023. "Climate change vs energy security? The conditional support for energy sources among Western Europeans," Energy Policy, Elsevier, vol. 174(C).
    5. Chuang, Ming Chih & Ma, Hwong Wen, 2013. "Energy security and improvements in the function of diversity indices—Taiwan energy supply structure case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 9-20.
    6. Bruce Tonn & Paul Frymier & Jared Graves & Jessa Meyers, 2010. "A Sustainable Energy Scenario for the United States: Year 2050," Sustainability, MDPI, vol. 2(12), pages 1-31, November.
    7. Sobin, Nathaniel & Molenaar, Keith & Cahill, Eric, 2012. "Mapping goal alignment of deployment programs for alternative fuel technologies: An analysis of wide-scope grant programs in the United States," Energy Policy, Elsevier, vol. 51(C), pages 405-416.
    8. Fischhendler, Itay & Nathan, Daniel, 2014. "In the name of energy security: the struggle over the exportation of Israeli natural gas," Energy Policy, Elsevier, vol. 70(C), pages 152-162.
    9. Harmsen, Robert & Graus, Wina, 2013. "How much CO2 emissions do we reduce by saving electricity? A focus on methods," Energy Policy, Elsevier, vol. 60(C), pages 803-812.
    10. Koirala, Bishwa S. & Bohara, Alok K. & Berrens, Robert P., 2014. "Estimating the net implicit price of energy efficient building codes on U.S. households," Energy Policy, Elsevier, vol. 73(C), pages 667-675.
    11. Chuang, Ming Chih & Ma, Hwong Wen, 2013. "An assessment of Taiwan’s energy policy using multi-dimensional energy security indicators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 301-311.
    12. Mallikarjun, Sreekanth & Lewis, Herbert F., 2014. "Energy technology allocation for distributed energy resources: A strategic technology-policy framework," Energy, Elsevier, vol. 72(C), pages 783-799.
    13. Bishwa Koirala & Alok Bohara & Hui Li, 2013. "Effects of energy-efficiency building codes in the energy savings and emissions of carbon dioxide," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 15(3), pages 271-290, July.
    14. Martins, Fernando Ramos & Pereira, Enio Bueno, 2011. "Enhancing information for solar and wind energy technology deployment in Brazil," Energy Policy, Elsevier, vol. 39(7), pages 4378-4390, July.
    15. Luke Kemp, 2015. "A climate treaty without the US Congress: Using executive powers to overcome the 'Ratification Straitjacket'," CCEP Working Papers 1513, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
    16. John Vogler & Hannes R. Stephan, 2013. "Governance dimensions of climate and energy security," Chapters, in: Hugh Dyer & Maria Julia Trombetta (ed.), International Handbook of Energy Security, chapter 14, pages 297-318, Edward Elgar Publishing.
    17. McAndrew, Ryan & Mulcahy, Rory & Gordon, Ross & Russell-Bennett, Rebekah, 2021. "Household energy efficiency interventions: A systematic literature review," Energy Policy, Elsevier, vol. 150(C).
    18. Stern, David & Pezzey, John & Lambie, N., 2012. "Where in the world is it cheapest to cut carbon emissions?," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 56(3), pages 1-17.
    19. Oguzhan Aslanturk & Goktug K pr zl, 2020. "The Role of Renewable Energy in Ensuring Energy Security of Supply and Reducing Energy-Related Import," International Journal of Energy Economics and Policy, Econjournals, vol. 10(2), pages 354-359.
    20. Hao Zhang & Xuan Zhang & Yan Wang & Pengchu Bai & Kazuichi Hayakawa & Lulu Zhang & Ning Tang, 2022. "Characteristics and Influencing Factors of Polycyclic Aromatic Hydrocarbons Emitted from Open Burning and Stove Burning of Biomass: A Brief Review," IJERPH, MDPI, vol. 19(7), pages 1-17, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:envira:v:44:y:2012:i:6:p:1443-1458. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.