IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v60y2013icp803-812.html
   My bibliography  Save this article

How much CO2 emissions do we reduce by saving electricity? A focus on methods

Author

Listed:
  • Harmsen, Robert
  • Graus, Wina

Abstract

In this paper we evaluate two approaches for estimating CO2 emission reduction from electricity savings: one based on average CO2 intensities of electricity generation and another that relies on marginal CO2 intensities.

Suggested Citation

  • Harmsen, Robert & Graus, Wina, 2013. "How much CO2 emissions do we reduce by saving electricity? A focus on methods," Energy Policy, Elsevier, vol. 60(C), pages 803-812.
  • Handle: RePEc:eee:enepol:v:60:y:2013:i:c:p:803-812
    DOI: 10.1016/j.enpol.2013.05.059
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421513003959
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2013.05.059?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. George, Mel & Banerjee, Rangan, 2011. "A methodology for analysis of impacts of grid integration of renewable energy," Energy Policy, Elsevier, vol. 39(3), pages 1265-1276, March.
    2. Bang, Guri, 2010. "Energy security and climate change concerns: Triggers for energy policy change in the United States?," Energy Policy, Elsevier, vol. 38(4), pages 1645-1653, April.
    3. Uyterlinde, Martine A. & Junginger, Martin & de Vries, Hage J. & Faaij, Andre P.C. & Turkenburg, Wim C., 2007. "Implications of technological learning on the prospects for renewable energy technologies in Europe," Energy Policy, Elsevier, vol. 35(8), pages 4072-4087, August.
    4. Tran Tuyen & Axel Michaelowa, 2006. "UNFCCC Kyoto Protocol Clean Development Mechanism Baseline Construction for Vietnam National Electricity Grid," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 11(3), pages 723-740, May.
    5. Palmer, Karen & Paul, Anthony & Woerman, Matt & Steinberg, Daniel C., 2011. "Federal policies for renewable electricity: Impacts and interactions," Energy Policy, Elsevier, vol. 39(7), pages 3975-3991, July.
    6. Doucette, Reed T. & McCulloch, Malcolm D., 2011. "Modeling the CO2 emissions from battery electric vehicles given the power generation mixes of different countries," Energy Policy, Elsevier, vol. 39(2), pages 803-811, February.
    7. Hekkert, Marko P. & Harmsen, Robert & de Jong, Arjen, 2007. "Explaining the rapid diffusion of Dutch cogeneration by innovation system functioning," Energy Policy, Elsevier, vol. 35(9), pages 4677-4687, September.
    8. Psomopoulos, C.S. & Skoula, I. & Karras, C. & Chatzimpiros, A. & Chionidis, M., 2010. "Electricity savings and CO2 emissions reduction in buildings sector: How important the network losses are in the calculation?," Energy, Elsevier, vol. 35(1), pages 485-490.
    9. Graus, W.H.J. & Voogt, M. & Worrell, E., 2007. "International comparison of energy efficiency of fossil power generation," Energy Policy, Elsevier, vol. 35(7), pages 3936-3951, July.
    10. Bettle, R. & Pout, C.H. & Hitchin, E.R., 2006. "Interactions between electricity-saving measures and carbon emissions from power generation in England and Wales," Energy Policy, Elsevier, vol. 34(18), pages 3434-3446, December.
    11. Shrestha, Ram M. & Natarajan, Bhaskar & Chakaravarti, K.K. & Rabin Shrestha,, 1998. "Environmental and power generation implications of efficient electrical appliances for India," Energy, Elsevier, vol. 23(12), pages 1065-1072.
    12. van Alphen, Klaas & van Voorst tot Voorst, Quirine & Hekkert, Marko P. & Smits, Ruud E.H.M., 2007. "Societal acceptance of carbon capture and storage technologies," Energy Policy, Elsevier, vol. 35(8), pages 4368-4380, August.
    13. Glasnovic, Zvonimir & Margeta, Jure, 2011. "Vision of total renewable electricity scenario," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1873-1884, May.
    14. Nässén, Jonas & Sprei, Frances & Holmberg, John, 2008. "Stagnating energy efficiency in the Swedish building sector--Economic and organisational explanations," Energy Policy, Elsevier, vol. 36(10), pages 3814-3822, October.
    15. Graus, Wina & Worrell, Ernst, 2011. "Methods for calculating CO2 intensity of power generation and consumption: A global perspective," Energy Policy, Elsevier, vol. 39(2), pages 613-627, February.
    16. Zhou, Nan & Fridley, David & McNeil, Michael & Zheng, Nina & Letschert, Virginie & Ke, Jing & Saheb, Yamina, 2011. "Analysis of potential energy saving and CO2 emission reduction of home appliances and commercial equipments in China," Energy Policy, Elsevier, vol. 39(8), pages 4541-4550, August.
    17. Holttinen, Hannele & Tuhkanen, Sami, 2004. "The effect of wind power on CO2 abatement in the Nordic Countries," Energy Policy, Elsevier, vol. 32(14), pages 1639-1652, September.
    18. Wiese, Andreas, 1994. "Electricity generation from renewable energy sources in Germany — Potentials, costs and implementation strategies," Renewable Energy, Elsevier, vol. 5(5), pages 1390-1393.
    19. Saidur, R. & Mahlia, T.M.I., 2010. "Energy, economic and environmental benefits of using high-efficiency motors to replace standard motors for the Malaysian industries," Energy Policy, Elsevier, vol. 38(8), pages 4617-4625, August.
    20. Pablo del Río González, 2007. "The interaction between emissions trading and renewable electricity support schemes. An overview of the literature," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 12(8), pages 1363-1390, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. de la Rue du Can, Stephane & Price, Lynn & Zwickel, Timm, 2015. "Understanding the full climate change impact of energy consumption and mitigation at the end-use level: A proposed methodology for allocating indirect carbon dioxide emissions," Applied Energy, Elsevier, vol. 159(C), pages 548-559.
    2. Wang, Junfeng & He, Shutong & Qiu, Ye & Liu, Nan & Li, Yongjian & Dong, Zhanfeng, 2018. "Investigating driving forces of aggregate carbon intensity of electricity generation in China," Energy Policy, Elsevier, vol. 113(C), pages 249-257.
    3. Nils Seckinger & Peter Radgen, 2021. "Dynamic Prospective Average and Marginal GHG Emission Factors—Scenario-Based Method for the German Power System until 2050," Energies, MDPI, vol. 14(9), pages 1-22, April.
    4. Levihn, Fabian, 2014. "CO2 emissions accounting: Whether, how, and when different allocation methods should be used," Energy, Elsevier, vol. 68(C), pages 811-818.
    5. Chaparro, Iván & Watts, David & Gil, Esteban, 2017. "Modeling marginal CO2 emissions in hydrothermal systems: Efficient carbon signals for renewables," Applied Energy, Elsevier, vol. 204(C), pages 318-331.
    6. Wouter Schram & Atse Louwen & Ioannis Lampropoulos & Wilfried van Sark, 2019. "Comparison of the Greenhouse Gas Emission Reduction Potential of Energy Communities," Energies, MDPI, vol. 12(23), pages 1-23, November.
    7. Hu, Xincheng & Banks, Jonathan & Guo, Yunting & Liu, Wei Victor, 2022. "Utilizing geothermal energy from enhanced geothermal systems as a heat source for oil sands separation: A numerical evaluation," Energy, Elsevier, vol. 238(PA).
    8. Xiaocun Zhang & Qiwen Zhu & Xueqi Zhang, 2023. "Carbon Emission Intensity of Final Electricity Consumption: Assessment and Decomposition of Regional Power Grids in China from 2005 to 2020," Sustainability, MDPI, vol. 15(13), pages 1-19, June.
    9. Yue, Hui & Worrell, Ernst & Crijns-Graus, Wina, 2018. "Modeling the multiple benefits of electricity savings for emissions reduction on power grid level: A case study of China’s chemical industry," Applied Energy, Elsevier, vol. 230(C), pages 1603-1632.
    10. Leurent, Martin & Da Costa, Pascal & Jasserand, Frédéric & Rämä, Miika & Persson, Urban, 2018. "Cost and climate savings through nuclear district heating in a French urban area," Energy Policy, Elsevier, vol. 115(C), pages 616-630.
    11. Fleschutz, Markus & Bohlayer, Markus & Braun, Marco & Henze, Gregor & Murphy, Michael D., 2021. "The effect of price-based demand response on carbon emissions in European electricity markets: The importance of adequate carbon prices," Applied Energy, Elsevier, vol. 295(C).
    12. Smit, Tycho A.B. & Hu, Jing & Harmsen, Robert, 2014. "Unravelling projected energy savings in 2020 of EU Member States using decomposition analyses," Energy Policy, Elsevier, vol. 74(C), pages 271-285.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Chul-Yong & Huh, Sung-Yoon, 2017. "Forecasting the diffusion of renewable electricity considering the impact of policy and oil prices: The case of South Korea," Applied Energy, Elsevier, vol. 197(C), pages 29-39.
    2. Soimakallio, Sampo & Kiviluoma, Juha & Saikku, Laura, 2011. "The complexity and challenges of determining GHG (greenhouse gas) emissions from grid electricity consumption and conservation in LCA (life cycle assessment) – A methodological review," Energy, Elsevier, vol. 36(12), pages 6705-6713.
    3. Fleschutz, Markus & Bohlayer, Markus & Braun, Marco & Henze, Gregor & Murphy, Michael D., 2021. "The effect of price-based demand response on carbon emissions in European electricity markets: The importance of adequate carbon prices," Applied Energy, Elsevier, vol. 295(C).
    4. Baumgärtner, Nils & Delorme, Roman & Hennen, Maike & Bardow, André, 2019. "Design of low-carbon utility systems: Exploiting time-dependent grid emissions for climate-friendly demand-side management," Applied Energy, Elsevier, vol. 247(C), pages 755-765.
    5. van Rijnsoever, Frank J. & Farla, Jacco C.M., 2014. "Identifying and explaining public preferences for the attributes of energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 71-82.
    6. Jens Weinmann & J�r�me MASSIANI, 2012. "Electric cars as a means to reduce greenhouse gas emissions: methods, results and policy implications in Germany," Working Papers 2012_21, Department of Economics, University of Venice "Ca' Foscari", revised 2012.
    7. Catherine Wolfram & Orie Shelef & Paul Gertler, 2012. "How Will Energy Demand Develop in the Developing World?," Journal of Economic Perspectives, American Economic Association, vol. 26(1), pages 119-138, Winter.
    8. Bhumika Gupta & Salil K. Sen, 2019. "Carbon Capture Usage and Storage with Scale-up: Energy Finance through Bricolage Deploying the Co-integration Methodology," International Journal of Energy Economics and Policy, Econjournals, vol. 9(6), pages 146-153.
    9. Anne-Maree Dowd & Michelle Rodriguez & Talia Jeanneret, 2015. "Social Science Insights for the BioCCS Industry," Energies, MDPI, vol. 8(5), pages 1-19, May.
    10. Rüdisüli, Martin & Romano, Elliot & Eggimann, Sven & Patel, Martin K., 2022. "Decarbonization strategies for Switzerland considering embedded greenhouse gas emissions in electricity imports," Energy Policy, Elsevier, vol. 162(C).
    11. Baral, Nabin & Rabotyagov, Sergey, 2017. "How much are wood-based cellulosic biofuels worth in the Pacific Northwest? Ex-ante and ex-post analysis of local people's willingness to pay," Forest Policy and Economics, Elsevier, vol. 83(C), pages 99-106.
    12. Setiawan, Andri D. & Cuppen, Eefje, 2013. "Stakeholder perspectives on carbon capture and storage in Indonesia," Energy Policy, Elsevier, vol. 61(C), pages 1188-1199.
    13. Varga, Bogdan Ovidiu, 2013. "Electric vehicles, primary energy sources and CO2 emissions: Romanian case study," Energy, Elsevier, vol. 49(C), pages 61-70.
    14. Bryan K. Mignone & Thomas Alfstad & Aaron Bergman & Kenneth Dubin & Richard Duke & Paul Friley & Andrew Martinez & Matthew Mowers & Karen Palmer & Anthony Paul & Sharon Showalter & Daniel Steinberg & , 2012. "Cost-effectiveness and Economic Incidence of a Clean Energy Standard," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 3).
    15. Josefin Borg & Anna Yström, 2020. "Collaborating for energy efficiency in Swedish shipping industry: interrelating practice and challenges," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(5), pages 4289-4310, June.
    16. Sebastian Rausch and Valerie J. Karplus, 2014. "Markets versus Regulation: The Efficiency and Distributional Impacts of U.S. Climate Policy Proposals," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    17. Harrison Fell & Daniel T. Kaffine, 2014. "A one-two punch: Joint effects of natural gas abundance and renewables on coal-fired power plants," Working Papers 2014-10, Colorado School of Mines, Division of Economics and Business.
    18. Brown, Marilyn A. & Gumerman, Etan & Sun, Xiaojing & Sercy, Kenneth & Kim, Gyungwon, 2012. "Myths and facts about electricity in the U.S. South," Energy Policy, Elsevier, vol. 40(C), pages 231-241.
    19. Gottschamer, L. & Zhang, Q., 2016. "Interactions of factors impacting implementation and sustainability of renewable energy sourced electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 164-174.
    20. Schroeder, Andreas & Oei, Pao-Yu & Sander, Aram & Hankel, Lisa & Laurisch, Lilian Charlotte, 2013. "The integration of renewable energies into the German transmission grid—A scenario comparison," Energy Policy, Elsevier, vol. 61(C), pages 140-150.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:60:y:2013:i:c:p:803-812. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.