IDEAS home Printed from https://ideas.repec.org/a/sae/envira/v22y1990i1p39-52.html
   My bibliography  Save this article

The Location of Fire Stations in a Rural Environment: A Case Study

Author

Listed:
  • D Richard
  • H Beguin
  • D Peeters

Abstract

In this paper an application of location-allocation modelling to an emergency service is presented. This study differs in two aspects from earlier work because it covers two neglected fields: (1) it is concerned with a rural environment whereas most case studies are about urban areas; (2) it is a comparison of the performance of several models instead of using only one. Efficiency as well as equity are taken into account. The main conclusions are about the issues of the choice of an appropriate model from 3 candidate models, the stability of the solutions with respect to variations in the number of facilities, the quasi-nested structure of some solutions, and the high cost of introducing equity.

Suggested Citation

  • D Richard & H Beguin & D Peeters, 1990. "The Location of Fire Stations in a Rural Environment: A Case Study," Environment and Planning A, , vol. 22(1), pages 39-52, January.
  • Handle: RePEc:sae:envira:v:22:y:1990:i:1:p:39-52
    DOI: 10.1068/a220039
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1068/a220039
    Download Restriction: no

    File URL: https://libkey.io/10.1068/a220039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Warren Walker, 1974. "Using the Set-Covering Problem to Assign Fire Companies to Fire Houses," Operations Research, INFORMS, vol. 22(2), pages 275-277, April.
    2. Hanjoul, Pierre & Peeters, Dominique, 1985. "A comparison of two dual-based procedures for solving the p-median problem," European Journal of Operational Research, Elsevier, vol. 20(3), pages 387-396, June.
    3. Peter Kolesar & Warren Walker & Jack Hausner, 1975. "Determining the Relation between Fire Engine Travel Times and Travel Distances in New York City," Operations Research, INFORMS, vol. 23(4), pages 614-627, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. H Beguin & I Thomas & D Vandenbussche, 1992. "Weight Variations within a Set of Demand Points, and Location-Allocation Issues: A Case Study of Public Libraries," Environment and Planning A, , vol. 24(12), pages 1769-1779, December.
    2. Ogryczak, Wlodzimierz, 1997. "On the lexicographic minimax approach to location problems," European Journal of Operational Research, Elsevier, vol. 100(3), pages 566-585, August.
    3. Amiri-Aref, Mehdi & Farahani, Reza Zanjirani & Hewitt, Mike & Klibi, Walid, 2019. "Equitable location of facilities in a region with probabilistic barriers to travel," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 66-85.
    4. Noga Alon & Michal Feldman & Ariel D. Procaccia & Moshe Tennenholtz, 2010. "Strategyproof Approximation of the Minimax on Networks," Mathematics of Operations Research, INFORMS, vol. 35(3), pages 513-526, August.
    5. N C Simpson & P G Hancock, 2009. "Fifty years of operational research and emergency response," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 126-139, May.
    6. Grubesic, Tony H. & Matisziw, Timothy C. & Murray, Alan T., 2012. "Assessing geographic coverage of the essential air service program," Socio-Economic Planning Sciences, Elsevier, vol. 46(2), pages 124-135.
    7. Dimopoulou, Maria & Giannikos, Ioannis, 2004. "Towards an integrated framework for forest fire control," European Journal of Operational Research, Elsevier, vol. 152(2), pages 476-486, January.
    8. Callaghan, Becky & Salhi, Said & Nagy, Gábor, 2017. "Speeding up the optimal method of Drezner for the p-centre problem in the plane," European Journal of Operational Research, Elsevier, vol. 257(3), pages 722-734.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. N C Simpson & P G Hancock, 2009. "Fifty years of operational research and emergency response," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 126-139, May.
    2. Marcos Singer & Patricio Donoso & Natalia Jadue, 2004. "Evaluacion De Las Oportunidades De Mejoramiento De La Logistica Directa De Emergencia," Abante, Escuela de Administracion. Pontificia Universidad Católica de Chile., vol. 7(2), pages 179-209.
    3. Jack Brimberg & Pierre Hansen & Nenad Mladenović & Eric D. Taillard, 2000. "Improvements and Comparison of Heuristics for Solving the Uncapacitated Multisource Weber Problem," Operations Research, INFORMS, vol. 48(3), pages 444-460, June.
    4. P. Daniel Wright & Matthew J. Liberatore & Robert L. Nydick, 2006. "A Survey of Operations Research Models and Applications in Homeland Security," Interfaces, INFORMS, vol. 36(6), pages 514-529, December.
    5. Jack Brimberg & Robert F. Love, 1991. "Estimating travel distances by the weighted lp norm," Naval Research Logistics (NRL), John Wiley & Sons, vol. 38(2), pages 241-259, April.
    6. Erhan Erkut & Armann Ingolfsson & Güneş Erdoğan, 2008. "Ambulance location for maximum survival," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(1), pages 42-58, February.
    7. Alberto Ceselli & Federico Liberatore & Giovanni Righini, 2009. "A computational evaluation of a general branch-and-price framework for capacitated network location problems," Annals of Operations Research, Springer, vol. 167(1), pages 209-251, March.
    8. Kurt Jörnsten & Andreas Klose, 2016. "An improved Lagrangian relaxation and dual ascent approach to facility location problems," Computational Management Science, Springer, vol. 13(3), pages 317-348, July.
    9. Wang, Yiyuan & Pan, Shiwei & Al-Shihabi, Sameh & Zhou, Junping & Yang, Nan & Yin, Minghao, 2021. "An improved configuration checking-based algorithm for the unicost set covering problem," European Journal of Operational Research, Elsevier, vol. 294(2), pages 476-491.
    10. Michael Brusco & Douglas Steinley, 2015. "Affinity Propagation and Uncapacitated Facility Location Problems," Journal of Classification, Springer;The Classification Society, vol. 32(3), pages 443-480, October.
    11. Raymond F. Boykin & Mardyros Kazarians & Raymond A. Freeman, 1986. "Comparative Fire Risk Study of PCB Transformers," Risk Analysis, John Wiley & Sons, vol. 6(4), pages 477-488, December.
    12. Westgate, Bradford S. & Woodard, Dawn B. & Matteson, David S. & Henderson, Shane G., 2016. "Large-network travel time distribution estimation for ambulances," European Journal of Operational Research, Elsevier, vol. 252(1), pages 322-333.
    13. Drexl, Andreas & Klose, Andreas, 2001. "Facility location models for distribution system design," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 546, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    14. Uster, Halit & Love, Robert F., 2001. "On the directional bias of the lbp-norm," European Journal of Operational Research, Elsevier, vol. 128(3), pages 664-673, February.
    15. Dillmann, Roland & Becker, Burkhard & Beckefeld, Volker, 1996. "Practical aspects of route planning for magazine and newspaper wholesalers," European Journal of Operational Research, Elsevier, vol. 90(1), pages 1-12, April.
    16. Zhengbo Hao & Yizhe Wang & Xiaoguang Yang, 2024. "Every Second Counts: A Comprehensive Review of Route Optimization and Priority Control for Urban Emergency Vehicles," Sustainability, MDPI, vol. 16(7), pages 1-25, March.
    17. A Ingolfsson & E Erkut & S Budge, 2003. "Simulation of single start station for Edmonton EMS," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(7), pages 736-746, July.
    18. Susan Budge & Armann Ingolfsson & Dawit Zerom, 2010. "Empirical Analysis of Ambulance Travel Times: The Case of Calgary Emergency Medical Services," Management Science, INFORMS, vol. 56(4), pages 716-723, April.
    19. Sorensen, Paul & Church, Richard, 2010. "Integrating expected coverage and local reliability for emergency medical services location problems," Socio-Economic Planning Sciences, Elsevier, vol. 44(1), pages 8-18, March.
    20. Michael Brusco & Hans-Friedrich Köhn, 2009. "Exemplar-Based Clustering via Simulated Annealing," Psychometrika, Springer;The Psychometric Society, vol. 74(3), pages 457-475, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:envira:v:22:y:1990:i:1:p:39-52. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.