IDEAS home Printed from https://ideas.repec.org/a/sae/envira/v13y1981i8p1001-1028.html
   My bibliography  Save this article

A Unifying Framework for Public Facility Location Problems—Part 1: A Critical Overview and Some Unsolved Problems

Author

Listed:
  • G Leonardi

    (International Institute for Applied Systems Analysis, A-2361 Laxenburg, Austria)

Abstract

This paper, a condensed report of the present state of the work in the Public Facility Location Task (formerly the Normative Location Modeling Task) at IIASA, has three main aims: first, to build a general framework for location problems; second, to use this framework to unify existing location models; and, third, to use the framework to develop new, more general, and more meaningful location models. Suggestions are also given on how to introduce multiple services and multiple time periods in location problems. The multiactivity dynamic location models that this perspective generates is the subject of future research in the Public Facility Location Task. This first part of the paper gives a nontechnical description of the proposed general framework for analyzing location problems. The second part will describe mathematical models for static, single-service, facility location problems and their possible extensions and improvements, and will appear in the next issue.

Suggested Citation

  • G Leonardi, 1981. "A Unifying Framework for Public Facility Location Problems—Part 1: A Critical Overview and Some Unsolved Problems," Environment and Planning A, , vol. 13(8), pages 1001-1028, August.
  • Handle: RePEc:sae:envira:v:13:y:1981:i:8:p:1001-1028
    DOI: 10.1068/a131001
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1068/a131001
    Download Restriction: no

    File URL: https://libkey.io/10.1068/a131001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David L. Huff, 1966. "A Programmed Solution for Approximating an Optimum Retail Location," Land Economics, University of Wisconsin Press, vol. 42(3), pages 293-303.
    2. Donald Erlenkotter, 1977. "Facility Location with Price-Sensitive Demands: Private, Public, and Quasi-Public," Management Science, INFORMS, vol. 24(4), pages 378-386, December.
    3. Constantine Toregas & Ralph Swain & Charles ReVelle & Lawrence Bergman, 1971. "The Location of Emergency Service Facilities," Operations Research, INFORMS, vol. 19(6), pages 1363-1373, October.
    4. Donald R. Plane & Thomas E. Hendrick, 1977. "Mathematical Programming and the Location of Fire Companies for the Denver Fire Department," Operations Research, INFORMS, vol. 25(4), pages 563-578, August.
    5. M. A. Efroymson & T. L. Ray, 1966. "A Branch-Bound Algorithm for Plant Location," Operations Research, INFORMS, vol. 14(3), pages 361-368, June.
    6. Charles Revelle & David Marks & Jon C. Liebman, 1970. "An Analysis of Private and Public Sector Location Models," Management Science, INFORMS, vol. 16(11), pages 692-707, July.
    7. McFadden, Daniel, 1974. "The measurement of urban travel demand," Journal of Public Economics, Elsevier, vol. 3(4), pages 303-328, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cho, Cheol-Joo, 1998. "An equity-efficiency trade-off model for the optimum location of medical care facilities," Socio-Economic Planning Sciences, Elsevier, vol. 32(2), pages 99-112, June.
    2. U. Seppaelae, 1997. "An Evolutionary Model for Spatial Location of Economic Facilities," Working Papers ir97003, International Institute for Applied Systems Analysis.
    3. Owen, Susan Hesse & Daskin, Mark S., 1998. "Strategic facility location: A review," European Journal of Operational Research, Elsevier, vol. 111(3), pages 423-447, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Wei & Wu, Shining & Wang, Shuaian & Zhen, Lu & Qu, Xiaobo, 2021. "Emergency facility location problems in logistics: Status and perspectives," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    2. P. Daniel Wright & Matthew J. Liberatore & Robert L. Nydick, 2006. "A Survey of Operations Research Models and Applications in Homeland Security," Interfaces, INFORMS, vol. 36(6), pages 514-529, December.
    3. P R Harper & S Phillips & J E Gallagher, 2005. "Geographical simulation modelling for the regional planning of oral and maxillofacial surgery across London," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(2), pages 134-143, February.
    4. Masashi Miyagawa, 2020. "Optimal number and length of point-like and line-like facilities of grid and random patterns," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 213-230, April.
    5. Harper, P. R. & Shahani, A. K. & Gallagher, J. E. & Bowie, C., 2005. "Planning health services with explicit geographical considerations: a stochastic location-allocation approach," Omega, Elsevier, vol. 33(2), pages 141-152, April.
    6. H K Smith & G Laporte & P R Harper, 2009. "Locational analysis: highlights of growth to maturity," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 140-148, May.
    7. Ting L. Lei & Richard L. Church, 2014. "Vector Assignment Ordered Median Problem," International Regional Science Review, , vol. 37(2), pages 194-224, April.
    8. Mahmutoğulları, Özlem & Yaman, Hande, 2023. "Robust alternative fuel refueling station location problem with routing under decision-dependent flow uncertainty," European Journal of Operational Research, Elsevier, vol. 306(1), pages 173-188.
    9. Sorensen, Paul & Church, Richard, 2010. "Integrating expected coverage and local reliability for emergency medical services location problems," Socio-Economic Planning Sciences, Elsevier, vol. 44(1), pages 8-18, March.
    10. Pal, Raktim & Bose, Indranil, 2009. "An optimization based approach for deployment of roadway incident response vehicles with reliability constraints," European Journal of Operational Research, Elsevier, vol. 198(2), pages 452-463, October.
    11. N C Simpson & P G Hancock, 2009. "Fifty years of operational research and emergency response," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 126-139, May.
    12. Pieter L. van den Berg & Guido A. G. Legemaate & Rob D. van der Mei, 2017. "Increasing the Responsiveness of Firefighter Services by Relocating Base Stations in Amsterdam," Interfaces, INFORMS, vol. 47(4), pages 352-361, August.
    13. M S Daskin & A Haghani, 1984. "Multiple Vehicle Routing and Dispatching to an Emergency Scene," Environment and Planning A, , vol. 16(10), pages 1349-1359, October.
    14. Grubesic, Tony H. & Matisziw, Timothy C. & Murray, Alan T., 2012. "Assessing geographic coverage of the essential air service program," Socio-Economic Planning Sciences, Elsevier, vol. 46(2), pages 124-135.
    15. Badri, Masood A. & Mortagy, Amr K. & Alsayed, Colonel Ali, 1998. "A multi-objective model for locating fire stations," European Journal of Operational Research, Elsevier, vol. 110(2), pages 243-260, October.
    16. Emel Aktaş & Özay Özaydın & Burçin Bozkaya & Füsun Ülengin & Şule Önsel, 2013. "Optimizing Fire Station Locations for the Istanbul Metropolitan Municipality," Interfaces, INFORMS, vol. 43(3), pages 240-255, May-June.
    17. Katta G. Murty & Philipp A. Djang, 1999. "The U.S. Army National Guard's Mobile Training Simulators Location and Routing Problem," Operations Research, INFORMS, vol. 47(2), pages 175-182, April.
    18. Ran Wei & Alan Murray & Rajan Batta, 2014. "A bounding-based solution approach for the continuous arc covering problem," Journal of Geographical Systems, Springer, vol. 16(2), pages 161-182, April.
    19. King, Richard A. & Dahlgran, Roger A. & McDermed, Ann A. & McPeters, David L., 1979. "Evaluation Of Alternative Plant Locations," Department of Economics and Business - Archive 259632, North Carolina State University, Department of Economics.
    20. Bakker, Hannah & Diehlmann, Florian & Wiens, Marcus & Nickel, Stefan & Schultmann, Frank, 2023. "School or parking lot? Selecting locations for points of distribution in urban disasters," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:envira:v:13:y:1981:i:8:p:1001-1028. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.