IDEAS home Printed from https://ideas.repec.org/a/sae/engenv/v25y2014i6-7p1153-1161.html
   My bibliography  Save this article

The Systemic Failure of General Circulation Climate Models: A Tribute to S. Fred Singer

Author

Listed:
  • Patrick J. Michaels

    (Center for the Study of Science, Cato Institute, Washington DC 20001 USA)

Abstract

Observed trends in global surface air temperature depart significantly from those predicted by the ensemble of models used in the Fifth Assessment Report of the United Nations' Intergovernmental Panel on Climate Change. An alternative paradigm, where lower rates of warming are predicted, has emerged in the last three years. Here we test the hypotheses put forth by those models and document the alternative that is likely more consistent with observations.

Suggested Citation

  • Patrick J. Michaels, 2014. "The Systemic Failure of General Circulation Climate Models: A Tribute to S. Fred Singer," Energy & Environment, , vol. 25(6-7), pages 1153-1161, August.
  • Handle: RePEc:sae:engenv:v:25:y:2014:i:6-7:p:1153-1161
    DOI: 10.1260/0958-305X.25.6-7.1153
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1260/0958-305X.25.6-7.1153
    Download Restriction: no

    File URL: https://libkey.io/10.1260/0958-305X.25.6-7.1153?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. J. Annan & J. Hargreaves, 2011. "On the generation and interpretation of probabilistic estimates of climate sensitivity," Climatic Change, Springer, vol. 104(3), pages 423-436, February.
    2. Loehle, Craig, 2014. "A minimal model for estimating climate sensitivity," Ecological Modelling, Elsevier, vol. 276(C), pages 80-84.
    3. Magne Aldrin & Marit Holden & Peter Guttorp & Ragnhild Bieltvedt Skeie & Gunnar Myhre & Terje Koren Berntsen, 2012. "Bayesian estimation of climate sensitivity based on a simple climate model fitted to observations of hemispheric temperatures and global ocean heat content," Environmetrics, John Wiley & Sons, Ltd., vol. 23(3), pages 253-271, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Loehle, Craig, 2014. "A minimal model for estimating climate sensitivity," Ecological Modelling, Elsevier, vol. 276(C), pages 80-84.
    2. Ronan Connolly & Michael Connolly & Robert M. Carter & Willie Soon, 2020. "How Much Human-Caused Global Warming Should We Expect with Business-As-Usual (BAU) Climate Policies? A Semi-Empirical Assessment," Energies, MDPI, vol. 13(6), pages 1-51, March.
    3. Richard S. J. Tol & In Chang Hwang & Frédéric Reynès, 2012. "The Effect of Learning on Climate Policy under Fat-tailed Uncertainty," Working Paper Series 5312, Department of Economics, University of Sussex Business School.
    4. Richard Tol, 2015. "Bootstraps for Meta-Analysis with an Application to the Impact of Climate Change," Computational Economics, Springer;Society for Computational Economics, vol. 46(2), pages 287-303, August.
    5. Kevin D. Dayaratna & Ross McKitrick & Patrick J. Michaels, 2020. "Climate sensitivity, agricultural productivity and the social cost of carbon in FUND," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 22(3), pages 433-448, July.
    6. Tol, Richard S.J., 2014. "Quantifying the consensus on anthropogenic global warming in the literature: A re-analysis," Energy Policy, Elsevier, vol. 73(C), pages 701-705.
    7. Samuel Jovan Okullo, 2020. "Determining the Social Cost of Carbon: Under Damage and Climate Sensitivity Uncertainty," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 75(1), pages 79-103, January.
    8. Martha Butler & Patrick Reed & Karen Fisher-Vanden & Klaus Keller & Thorsten Wagener, 2014. "Inaction and climate stabilization uncertainties lead to severe economic risks," Climatic Change, Springer, vol. 127(3), pages 463-474, December.
    9. Hwang, In Chang & Reynès, Frédéric & Tol, Richard S.J., 2017. "The effect of learning on climate policy under fat-tailed risk," Resource and Energy Economics, Elsevier, vol. 48(C), pages 1-18.
    10. Masako Ikefuji & Jan R. Magnus, 2020. "The perception of climate sensitivity: Revealing priors from posteriors," ISER Discussion Paper 1111, Institute of Social and Economic Research, Osaka University.
    11. Grant R. McDermott, 2021. "Skeptic priors and climate consensus," Climatic Change, Springer, vol. 166(1), pages 1-23, May.
    12. Alexandra Jonko & Nathan M. Urban & Balu Nadiga, 2018. "Towards Bayesian hierarchical inference of equilibrium climate sensitivity from a combination of CMIP5 climate models and observational data," Climatic Change, Springer, vol. 149(2), pages 247-260, July.
    13. KEVIN DAYARATNA & ROSS McKITRICK & DAVID KREUTZER, 2017. "Empirically Constrained Climate Sensitivity And The Social Cost Of Carbon," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 8(02), pages 1-12, May.
    14. Balasubramanya T. Nadiga & Nathan M. Urban, 2019. "Improved representation of ocean heat content in energy balance models," Climatic Change, Springer, vol. 152(3), pages 503-516, March.
    15. Stephan Lewandowsky & James Risbey & Michael Smithson & Ben Newell & John Hunter, 2014. "Scientific uncertainty and climate change: Part I. Uncertainty and unabated emissions," Climatic Change, Springer, vol. 124(1), pages 21-37, May.
    16. Cawley, Gavin C. & Cowtan, Kevin & Way, Robert G. & Jacobs, Peter & Jokimäki, Ari, 2015. "On a minimal model for estimating climate sensitivity," Ecological Modelling, Elsevier, vol. 297(C), pages 20-25.
    17. Yew-Kwang Ng, 2016. "The Importance of Global Extinction in Climate Change Policy," Global Policy, London School of Economics and Political Science, vol. 7(3), pages 315-322, September.
    18. Ward, James D. & Mohr, Steve H. & Myers, Baden R. & Nel, Willem P., 2012. "High estimates of supply constrained emissions scenarios for long-term climate risk assessment," Energy Policy, Elsevier, vol. 51(C), pages 598-604.
    19. Salvador Pueyo, 2012. "Solution to the paradox of climate sensitivity," Climatic Change, Springer, vol. 113(2), pages 163-179, July.
    20. John K. Dagsvik & Mariachiara Fortuna & Sigmund Hov Moen, 2020. "How does temperature vary over time?: evidence on the stationary and fractal nature of temperature fluctuations," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 883-908, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:engenv:v:25:y:2014:i:6-7:p:1153-1161. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.