IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0224171.html
   My bibliography  Save this article

A participatory community case study of periurban coastal flood vulnerability in southern Ecuador

Author

Listed:
  • Erica Tauzer
  • Mercy J Borbor-Cordova
  • Jhoyzett Mendoza
  • Telmo De La Cuadra
  • Jorge Cunalata
  • Anna M Stewart-Ibarra

Abstract

Background: Populations in coastal cities are exposed to increasing risk of flooding, resulting in rising damages to health and assets. Adaptation measures, such as early warning systems for floods (EWSFs), have the potential to reduce the risk and impact of flood events when tailored to reflect the local social-ecological context and needs. Community perceptions and experiences play a critical role in risk management, since perceptions influence people’s behaviors in response to EWSFs and other interventions. Methods: We investigated community perceptions and responses in flood-prone periurban areas in the coastal city of Machala, Ecuador. Focus groups (n = 11) were held with community members (n = 65 people) to assess perceptions of flood exposure, sensitivity, adaptive capacity, and current alert systems. Discussions were audio recorded, transcribed, and coded by topic. Participatory maps were field validated, georeferenced, and digitized using GIS software. Qualitative data were triangulated with historical government information on rainfall, flood events, population demographics, and disease outbreaks. Results: Flooding was associated with seasonal rainfall, El Niño events, high ocean tides, blocked drainage areas, overflowing canals, collapsed sewer systems, and low local elevation. Participatory maps revealed spatial heterogeneity in perceived flood risk across the community. Ten areas of special concern were mapped, including places with strong currents during floods, low elevation areas with schools and homes, and other places that accumulate stagnant water. Sensitive populations included children, the elderly, physically handicapped people, low-income families, and recent migrants. Flood impacts included damages to property and infrastructure, power outages, and the economic cost of rebuilding/repairs. Health impacts included outbreaks of infectious diseases, skin infections, snakebite, and injury/drowning. Adaptive capacity was weakest during the preparation and recovery stages of flooding. Participants perceived that their capacity to take action was limited by a lack of social organization, political engagement, and financial capital. People perceived that flood forecasts were too general, and instead relied on alerts via social media. Conclusions: This study highlights the challenges and opportunities for climate change adaptation in coastal cities. Areas of special concern provide clear local policy targets. The participatory approach presented here (1) provides important context to shape local policy and interventions in Ecuador, complimenting data gathered through standard flood reports, (2) provides a voice for marginalized communities and a mechanism to raise local awareness, and (3) provides a research framework that can be adapted to other resource-limited coastal communities at risk of flooding.

Suggested Citation

  • Erica Tauzer & Mercy J Borbor-Cordova & Jhoyzett Mendoza & Telmo De La Cuadra & Jorge Cunalata & Anna M Stewart-Ibarra, 2019. "A participatory community case study of periurban coastal flood vulnerability in southern Ecuador," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-22, October.
  • Handle: RePEc:plo:pone00:0224171
    DOI: 10.1371/journal.pone.0224171
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0224171
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0224171&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0224171?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Charvériat, Céline, 2000. "Natural Disasters in Latin America and the Caribbean: An Overview of Risk," IDB Publications (Working Papers) 1804, Inter-American Development Bank.
    2. Céline Charvériat, 2000. "Natural Disasters in Latin America and the Caribbean: An Overview of Risk," IDB Publications (Working Papers) 6793, Inter-American Development Bank.
    3. Susan Hanson & Robert Nicholls & N. Ranger & S. Hallegatte & J. Corfee-Morlot & C. Herweijer & J. Chateau, 2011. "A global ranking of port cities with high exposure to climate extremes," Climatic Change, Springer, vol. 104(1), pages 89-111, January.
    4. Linda Mayoux & Robert Chambers, 2005. "Reversing the paradigm: quantification, participatory methods and pro-poor impact assessment," Journal of International Development, John Wiley & Sons, Ltd., vol. 17(2), pages 271-298.
    5. Yacov Y. Haimes, 2009. "On the Complex Definition of Risk: A Systems‐Based Approach," Risk Analysis, John Wiley & Sons, vol. 29(12), pages 1647-1654, December.
    6. Marianne Fay, 2005. "The Urban Poor in Latin America," World Bank Publications - Books, The World Bank Group, number 7263, December.
    7. Maxx Dilley & Robert S. Chen & Uwe Deichmann & Arthur L. Lerner-Lam & Margaret Arnold, 2005. "Natural Disaster Hotspots: A Global Risk Analysis," World Bank Publications - Books, The World Bank Group, number 7376, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brecht, Henrike & Deichmann, Uwe & Wang, Hyoung Gun, 2013. "A global urban risk index," Policy Research Working Paper Series 6506, The World Bank.
    2. Klomp, Jeroen & Hoogezand, Barry, 2018. "Natural disasters and agricultural protection: A panel data analysis," World Development, Elsevier, vol. 104(C), pages 404-417.
    3. María Ibarrarán & Matthias Ruth & Sanjana Ahmad & Marisa London, 2009. "Climate change and natural disasters: macroeconomic performance and distributional impacts," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 11(3), pages 549-569, June.
    4. Daniel Lederman & Justin T. Lesniak, 2018. "Open and Nimble," World Bank Publications - Books, The World Bank Group, number 28544, December.
    5. Adriana Keating & Karen Campbell & Reinhard Mechler & Piotr Magnuszewski & Junko Mochizuki & Wei Liu & Michael Szoenyi & Colin McQuistan, 2017. "Disaster resilience: what it is and how it can engender a meaningful change in development policy," Development Policy Review, Overseas Development Institute, vol. 35(1), pages 65-91, January.
    6. Erica Tauzer & Mercy J. Borbor-Cordova & Telmo de la Cuadra & Susana del Granado & Carol Franco-Bellini & Carlos Medina & Jhoyzette Mendoza & Moory M. Romero-Fernandez & Anna M. Stewart-Ibarra, 2017. "A Vulnerability Research Framework for the Development of Early Warning Systems for Floods," Development Research Working Paper Series 02/2017, Institute for Advanced Development Studies.
    7. Diego Arias & Katia Covarrubias, 2006. "Agricultural Insurance in Mesoamerica: An Opportunity to Deepen Rural Financial Markets," IDB Publications (Working Papers) 36538, Inter-American Development Bank.
    8. Matthias Garschagen & Patricia Romero-Lankao, 2015. "Exploring the relationships between urbanization trends and climate change vulnerability," Climatic Change, Springer, vol. 133(1), pages 37-52, November.
    9. Xiaobing Yu & Hong Chen & Chenliang Li, 2019. "Evaluate Typhoon Disasters in 21st Century Maritime Silk Road by Super-Efficiency DEA," IJERPH, MDPI, vol. 16(9), pages 1-10, May.
    10. Mook Bangalore & Andrew Smith & Ted Veldkamp, 2019. "Exposure to Floods, Climate Change, and Poverty in Vietnam," Economics of Disasters and Climate Change, Springer, vol. 3(1), pages 79-99, April.
    11. Nicolás Bronfman & Pamela Cisternas & Esperanza López-Vázquez & Luis Cifuentes, 2016. "Trust and risk perception of natural hazards: implications for risk preparedness in Chile," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 307-327, March.
    12. Jidong Wu & Ying Li & Ning Li & Peijun Shi, 2018. "Development of an Asset Value Map for Disaster Risk Assessment in China by Spatial Disaggregation Using Ancillary Remote Sensing Data," Risk Analysis, John Wiley & Sons, vol. 38(1), pages 17-30, January.
    13. Dapeng Huang & Renhe Zhang & Zhiguo Huo & Fei Mao & Youhao E & Wei Zheng, 2012. "An assessment of multidimensional flood vulnerability at the provincial scale in China based on the DEA method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(2), pages 1575-1586, November.
    14. Nicola Ranger & Stéphane Hallegatte & Sumana Bhattacharya & Murthy Bachu & Satya Priya & K. Dhore & Farhat Rafique & P. Mathur & Nicolas Naville & Fanny Henriet & Celine Herweijer & Sanjib Pohit & Jan, 2011. "An assessment of the potential impact of climate change on flood risk in Mumbai," Climatic Change, Springer, vol. 104(1), pages 139-167, January.
    15. Mehryar, Sara & Sasson, Idan & Surminski, Swenja, 2022. "Supporting urban adaptation to climate change: what role can resilience measurement tools play?," LSE Research Online Documents on Economics 113367, London School of Economics and Political Science, LSE Library.
    16. Viet-Ha Nhu & Ataollah Shirzadi & Himan Shahabi & Sushant K. Singh & Nadhir Al-Ansari & John J. Clague & Abolfazl Jaafari & Wei Chen & Shaghayegh Miraki & Jie Dou & Chinh Luu & Krzysztof Górski & Binh, 2020. "Shallow Landslide Susceptibility Mapping: A Comparison between Logistic Model Tree, Logistic Regression, Naïve Bayes Tree, Artificial Neural Network, and Support Vector Machine Algorithms," IJERPH, MDPI, vol. 17(8), pages 1-30, April.
    17. Antje Otto & Kristine Kern & Wolfgang Haupt & Peter Eckersley & Annegret H. Thieken, 2021. "Ranking local climate policy: assessing the mitigation and adaptation activities of 104 German cities," Climatic Change, Springer, vol. 167(1), pages 1-23, July.
    18. Adriana Kocornik-Mina & Thomas K. J. McDermott & Guy Michaels & Ferdinand Rauch, 2020. "Flooded Cities," American Economic Journal: Applied Economics, American Economic Association, vol. 12(2), pages 35-66, April.
    19. Matthias Garschagen & Gusti Ayu Ketut Surtiari & Mostapha Harb, 2018. "Is Jakarta’s New Flood Risk Reduction Strategy Transformational?," Sustainability, MDPI, vol. 10(8), pages 1-18, August.
    20. Aubin VIGNOBOUL, 2022. "The winds of inequalities: How hurricanes impact inequalities at the macro level?," LEO Working Papers / DR LEO 2986, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0224171. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.