IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0204510.html
   My bibliography  Save this article

Ranking stressor impacts on periphyton structure and function with mesocosm experiments and environmental-change forecasts

Author

Listed:
  • David M Costello
  • Konrad J Kulacki
  • Mary E McCarthy
  • Scott D Tiegs
  • Bradley J Cardinale

Abstract

Streams are being subjected to physical, chemical, and biological stresses stemming from both natural and anthropogenic changes to the planet. In the face of limited time and resources, scientists, resource managers, and policy makers need ways to rank stressors and their impacts so that we can prioritize them from the most to least important (i.e., perform ‘ecological triage’). We report results from an experiment in which we established a periphyton community from the Huron River (Michigan, USA) in 84 experimental ‘flumes’ (stream mesocosms). We then dosed the flumes with gradients of six common stressors (increased temperature, taxa extinctions, sedimentation, nitrogen, phosphorus, and road salt) and monitored periphyton structure and function. A set of a priori deterministic functions were fit to each stressor–endpoint response and model averaging based on AICc weights was used to develop concentration–response best-fit predictions. Model predictions from different stressors were then compared to forecasts of future environmental change to rank stressors according to the potential magnitude of impacts. All of the stressors studied altered at least one characteristic of the periphyton; however, the extent (i.e., structural and functional changes) and magnitude of effects expected under future forecasts differed significantly among stressors. Elevated nitrogen concentrations are projected to have the greatest combined effect on stream periphyton structure and function. Extinction, sediment, and phosphorus all had similar but less substantial impact on the periphyton (e.g., affected only structure not function, smaller magnitude change). Elevated temperature and salt both had measurable effects on periphyton, but their overall impacts were much lower than any of the other stressors. For periphyton in the Huron River, our results suggest that, among the stressors examined, increased N pollution may have the greatest potential to alter the structure and function of the periphyton community, and managers should prioritize reducing anthropogenic sources of nitrogen. Our study demonstrates an experimental approach to ecological triage that can be used as an additional line of evidence to prioritize management decisions for specific ecosystems in the face of ecological change.

Suggested Citation

  • David M Costello & Konrad J Kulacki & Mary E McCarthy & Scott D Tiegs & Bradley J Cardinale, 2018. "Ranking stressor impacts on periphyton structure and function with mesocosm experiments and environmental-change forecasts," PLOS ONE, Public Library of Science, vol. 13(9), pages 1-18, September.
  • Handle: RePEc:plo:pone00:0204510
    DOI: 10.1371/journal.pone.0204510
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0204510
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0204510&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0204510?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tom J. Battin & Louis A. Kaplan & J. Denis Newbold & Claude M. E. Hansen, 2003. "Contributions of microbial biofilms to ecosystem processes in stream mesocosms," Nature, Nature, vol. 426(6965), pages 439-442, November.
    2. Michael Oppenheimer & Christopher M. Little & Roger M. Cooke, 2016. "Expert judgement and uncertainty quantification for climate change," Nature Climate Change, Nature, vol. 6(5), pages 445-451, May.
    3. David U. Hooper & E. Carol Adair & Bradley J. Cardinale & Jarrett E. K. Byrnes & Bruce A. Hungate & Kristin L. Matulich & Andrew Gonzalez & J. Emmett Duffy & Lars Gamfeldt & Mary I. O’Connor, 2012. "A global synthesis reveals biodiversity loss as a major driver of ecosystem change," Nature, Nature, vol. 486(7401), pages 105-108, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pindyck, Robert S., 2019. "The social cost of carbon revisited," Journal of Environmental Economics and Management, Elsevier, vol. 94(C), pages 140-160.
    2. Gersch Inka, 2018. "Producer organizations and contract farming: a comparative study of smallholders’ market strategies in South India," ZFW – Advances in Economic Geography, De Gruyter, vol. 62(1), pages 14-29, March.
    3. Nibedita Mukherjee & Jean Huge & Farid Dahdouh-Guebas & Nico Koedam, 2014. "Ecosystem service valuations of mangrove ecosystems to inform decision making and future valuation exercises," ULB Institutional Repository 2013/217963, ULB -- Universite Libre de Bruxelles.
    4. Malayaranjan Sahoo & Narayan Sethi, 2022. "The dynamic impact of urbanization, structural transformation, and technological innovation on ecological footprint and PM2.5: evidence from newly industrialized countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 4244-4277, March.
    5. Tony E. Wong & Alexander M. R. Bakker & Klaus Keller, 2017. "Impacts of Antarctic fast dynamics on sea-level projections and coastal flood defense," Climatic Change, Springer, vol. 144(2), pages 347-364, September.
    6. Bernhard Dalheimer & Christoph Kubitza & Bernhard Brümmer, 2022. "Technical efficiency and farmland expansion: Evidence from oil palm smallholders in Indonesia," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(4), pages 1364-1387, August.
    7. Eva M. Murgado-Armenteros & María Gutierrez-Salcedo & Francisco José Torres-Ruiz, 2020. "The Concern about Biodiversity as a Criterion for the Classification of the Sustainable Consumer: A Cross-Cultural Approach," Sustainability, MDPI, vol. 12(8), pages 1-14, April.
    8. Lingzhan Miao & Song Guo & Zhilin Liu & Songqi Liu & Guoxiang You & Hao Qu & Jun Hou, 2019. "Effects of Nanoplastics on Freshwater Biofilm Microbial Metabolic Functions as Determined by BIOLOG ECO Microplates," IJERPH, MDPI, vol. 16(23), pages 1-12, November.
    9. Stephen C. L. Watson & Adrian C. Newton, 2018. "Dependency of Businesses on Flows of Ecosystem Services: A Case Study from the County of Dorset, UK," Sustainability, MDPI, vol. 10(5), pages 1-14, April.
    10. Lafuite, A.-S. & Loreau, M., 2017. "Time-delayed biodiversity feedbacks and the sustainability of social-ecological systems," Ecological Modelling, Elsevier, vol. 351(C), pages 96-108.
    11. Finger, Robert & Buchmann, Nina, 2015. "An ecological economic assessment of risk-reducing effects of species diversity in managed grasslands," Ecological Economics, Elsevier, vol. 110(C), pages 89-97.
    12. Julie E. Shortridge & Benjamin F. Zaitchik, 2018. "Characterizing climate change risks by linking robust decision frameworks and uncertain probabilistic projections," Climatic Change, Springer, vol. 151(3), pages 525-539, December.
    13. Scheiter, Simon & Savadogo, Patrice, 2016. "Ecosystem management can mitigate vegetation shifts induced by climate change in West Africa," Ecological Modelling, Elsevier, vol. 332(C), pages 19-27.
    14. Meixia Zhao & Haiyang Zhang & Yu Zhong & Dapeng Jiang & Guohui Liu & Hongqiang Yan & Hongyu Zhang & Pu Guo & Cuitian Li & Hongqiang Yang & Tegu Chen & Rui Wang, 2019. "The Status of Coral Reefs and Its Importance for Coastal Protection: A Case Study of Northeastern Hainan Island, South China Sea," Sustainability, MDPI, vol. 11(16), pages 1-13, August.
    15. Chun-Wei Chang & Takeshi Miki & Hao Ye & Sami Souissi & Rita Adrian & Orlane Anneville & Helen Agasild & Syuhei Ban & Yaron Be’eri-Shlevin & Yin-Ru Chiang & Heidrun Feuchtmayr & Gideon Gal & Satoshi I, 2022. "Causal networks of phytoplankton diversity and biomass are modulated by environmental context," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    16. Robert William Fuller & Tony E Wong & Klaus Keller, 2017. "Probabilistic inversion of expert assessments to inform projections about Antarctic ice sheet responses," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-13, December.
    17. Jonathan S. Lefcheck & Graham J. Edgar & Rick D. Stuart-Smith & Amanda E. Bates & Conor Waldock & Simon J. Brandl & Stuart Kininmonth & Scott D. Ling & J. Emmett Duffy & Douglas B. Rasher & Aneil F. A, 2021. "Species richness and identity both determine the biomass of global reef fish communities," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    18. Preeti Verma & R. Sagar, 2021. "The response of soil organic carbon to nitrogen-induced multiple ecological attributes," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 4120-4133, March.
    19. A. Procter & T. McDaniels & R. Vignola, 2017. "Using expert judgments to inform economic evaluation of ecosystem-based adaptation decisions: watershed management for enhancing water supply for Tegucigalpa, Honduras," Environment Systems and Decisions, Springer, vol. 37(4), pages 410-422, December.
    20. Robin Elahi & Kenneth P Sebens, 2013. "Experimental Removal and Recovery of Subtidal Grazers Highlights the Importance of Functional Redundancy and Temporal Context," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-10, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0204510. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.