IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0171184.html
   My bibliography  Save this article

Network structure impacts global commodity trade growth and resilience

Author

Listed:
  • Ali Kharrazi
  • Elena Rovenskaya
  • Brian D Fath

Abstract

Global commodity trade networks are critical to our collective sustainable development. Their increasing interconnectedness pose two practical questions: (i) Do the current network configurations support their further growth? (ii) How resilient are these networks to economic shocks? We analyze the data of global commodity trade flows from 1996 to 2012 to evaluate the relationship between structural properties of the global commodity trade networks and (a) their dynamic growth, as well as (b) the resilience of their growth with respect to the 2009 global economic shock. Specifically, we explore the role of network efficiency and redundancy using the information theory-based network flow analysis. We find that, while network efficiency is positively correlated with growth, highly efficient systems appear to be less resilient, losing more and gaining less growth following an economic shock. While all examined networks are rather redundant, we find that network redundancy does not hinder their growth. Moreover, systems exhibiting higher levels of redundancy lose less and gain more growth following an economic shock. We suggest that a strategy to support making global trade networks more efficient via, e.g., preferential trade agreements and higher specialization, can promote their further growth; while a strategy to increase the global trade networks’ redundancy via e.g., more abundant free-trade agreements, can improve their resilience to global economic shocks.

Suggested Citation

  • Ali Kharrazi & Elena Rovenskaya & Brian D Fath, 2017. "Network structure impacts global commodity trade growth and resilience," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-13, February.
  • Handle: RePEc:plo:pone00:0171184
    DOI: 10.1371/journal.pone.0171184
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0171184
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0171184&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0171184?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Giorgio Fagiolo & Javier Reyes & Stefano Schiavo, 2010. "The evolution of the world trade web: a weighted-network analysis," Journal of Evolutionary Economics, Springer, vol. 20(4), pages 479-514, August.
    2. Fagiolo, Giorgio & Reyes, Javier & Schiavo, Stefano, 2008. "On the topological properties of the world trade web: A weighted network analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(15), pages 3868-3873.
    3. Kharrazi, Ali & Rovenskaya, Elena & Fath, Brian D. & Yarime, Masaru & Kraines, Steven, 2013. "Quantifying the sustainability of economic resource networks: An ecological information-based approach," Ecological Economics, Elsevier, vol. 90(C), pages 177-186.
    4. Mukherjee, Joyita & Scharler, Ursula M. & Fath, Brian D. & Ray, Santanu, 2015. "Measuring sensitivity of robustness and network indices for an estuarine food web model under perturbations," Ecological Modelling, Elsevier, vol. 306(C), pages 160-173.
    5. Jiali Huang & Robert E Ulanowicz, 2014. "Ecological Network Analysis for Economic Systems: Growth and Development and Implications for Sustainable Development," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-8, June.
    6. Robert M. May & Simon A. Levin & George Sugihara, 2008. "Ecology for bankers," Nature, Nature, vol. 451(7181), pages 893-894, February.
    7. Jiankui He & Michael W. Deem, 2010. "Structure and Response in the World Trade Network," Papers 1010.0410, arXiv.org.
    8. Goerner, Sally J. & Lietaer, Bernard & Ulanowicz, Robert E., 2009. "Quantifying economic sustainability: Implications for free-enterprise theory, policy and practice," Ecological Economics, Elsevier, vol. 69(1), pages 76-81, November.
    9. O'Brien, Geoff & Hope, Alex, 2010. "Localism and energy: Negotiating approaches to embedding resilience in energy systems," Energy Policy, Elsevier, vol. 38(12), pages 7550-7558, December.
    10. Ulanowicz, Robert E., 2009. "The dual nature of ecosystem dynamics," Ecological Modelling, Elsevier, vol. 220(16), pages 1886-1892.
    11. D. Garlaschelli & M. I. Loffredo, 2004. "Fitness-dependent topological properties of the World Trade Web," Papers cond-mat/0403051, arXiv.org, revised Oct 2004.
    12. Foti, Nicholas J. & Pauls, Scott & Rockmore, Daniel N., 2013. "Stability of the World Trade Web over time – An extinction analysis," Journal of Economic Dynamics and Control, Elsevier, vol. 37(9), pages 1889-1910.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Emilia Titan & Simona-Andreea Apostu & Mihaela Mihai & Dorel Paraschiv & Daniela Manea, 2023. "The Sustainability of Digital Networks and Globalisation, the Key to Resilience?," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 25(S17), pages 950-950, November.
    2. Colton Brehm & Astrid Layton, 2021. "Nestedness of eco‐industrial networks: Exploring linkage distribution to promote sustainable industrial growth," Journal of Industrial Ecology, Yale University, vol. 25(1), pages 205-218, February.
    3. Panyam, Varuneswara & Huang, Hao & Davis, Katherine & Layton, Astrid, 2019. "Bio-inspired design for robust power grid networks," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    4. Qiang, Wenli & Niu, Shuwen & Liu, Aimin & Kastner, Thomas & Bie, Qiang & Wang, Xiang & Cheng, Shengkui, 2020. "Trends in global virtual land trade in relation to agricultural products," Land Use Policy, Elsevier, vol. 92(C).
    5. Hongtao Ren & Wenji Zhou & Marek Makowski & Hongbin Yan & Yadong Yu & Tieju Ma, 2021. "Incorporation of life cycle emissions and carbon price uncertainty into the supply chain network management of PVC production," Annals of Operations Research, Springer, vol. 300(2), pages 601-620, May.
    6. Li, Jingwei & Li, Shouwei, 2023. "Immunization of systemic risk in trade–investment networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 611(C).
    7. Kuhla, Kilian & Willner, Sven N & Otto, Christian & Levermann, Anders, 2023. "Resilience of international trade to typhoon-related supply disruptions," Journal of Economic Dynamics and Control, Elsevier, vol. 151(C).
    8. Enora Barrau & Mathias Glaus, 2022. "Structural and Environmental Performance of Evolving Industrial Symbiosis: A Multidimensional Analysis," Sustainability, MDPI, vol. 15(1), pages 1-17, December.
    9. Monica Billio & Roberto Casarin & Matteo Iacopini & Sylvia Kaufmann, 2023. "Bayesian Dynamic Tensor Regression," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(2), pages 429-439, April.
    10. Arnault Pachot & Adélaïde Albouy-Kissi & Benjamin Albouy-Kissi & Frédéric Chausse, 2021. "Decision support system for distributed manufacturing based on input-output analysis and economic complexity," Post-Print hal-03500970, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali Kharrazi & Brian D. Fath & Harald Katzmair, 2016. "Advancing Empirical Approaches to the Concept of Resilience: A Critical Examination of Panarchy, Ecological Information, and Statistical Evidence," Sustainability, MDPI, vol. 8(9), pages 1-17, September.
    2. Borrett, Stuart R. & Sheble, Laura & Moody, James & Anway, Evan C., 2018. "Bibliometric review of ecological network analysis: 2010–2016," Ecological Modelling, Elsevier, vol. 382(C), pages 63-82.
    3. Carey W. King, 2016. "Information Theory to Assess Relations Between Energy and Structure of the U.S. Economy Over Time," Biophysical Economics and Resource Quality, Springer, vol. 1(2), pages 1-33, December.
    4. Grazzini, Jakob & Spelta, Alessandro, 2022. "An empirical analysis of the global input–output network and its evolution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 594(C).
    5. Francisco Orlando Rosales & Brian D. Fath & Grace Yolanda Llerena, 2023. "Quantifying a virtual water metabolic network of the Metropolitan District of Quito, Ecuador using ecological network methods," Journal of Industrial Ecology, Yale University, vol. 27(5), pages 1304-1318, October.
    6. João Amador & Sónia Cabral, 2017. "Networks of Value-added Trade," The World Economy, Wiley Blackwell, vol. 40(7), pages 1291-1313, July.
    7. Zongning Wu & Hongbo Cai & Ruining Zhao & Ying Fan & Zengru Di & Jiang Zhang, 2020. "A Topological Analysis of Trade Distance: Evidence from the Gravity Model and Complex Flow Networks," Sustainability, MDPI, vol. 12(9), pages 1-17, April.
    8. Rosanna Grassi & Paolo Bartesaghi & Stefano Benati & Gian Paolo Clemente, 2021. "Multi-Attribute Community Detection in International Trade Network," Networks and Spatial Economics, Springer, vol. 21(3), pages 707-733, September.
    9. Paolo Bartesaghi & Gian Paolo Clemente & Rosanna Grassi, 2020. "Community structure in the World Trade Network based on communicability distances," Papers 2001.06356, arXiv.org, revised Jul 2020.
    10. Marcos Duenas & Rossana Mastrandrea & Matteo Barigozzi & Giorgio Fagiolo, 2017. "Spatio-Temporal Patterns of the International Merger and Acquisition Network," LEM Papers Series 2017/13, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    11. Charlie Joyez, 2017. "Network Structure of French Multinational Firms," Working Papers DT/2017/08, DIAL (Développement, Institutions et Mondialisation).
    12. Nobi, Ashadun & Lee, Tae Ho & Lee, Jae Woo, 2020. "Structure of trade flow networks for world commodities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    13. Fang, Delin & Chen, Bin, 2019. "Information-based ecological network analysis for carbon emissions," Applied Energy, Elsevier, vol. 238(C), pages 45-53.
    14. Assaf Almog & Rhys Bird & Diego Garlaschelli, 2015. "Enhanced Gravity Model of trade: reconciling macroeconomic and network models," Papers 1506.00348, arXiv.org, revised Feb 2019.
    15. Kiss, Tibor & Hartung, Katalin & Hetesi, Zsolt, 2019. "Termelőüzem ökológiai szempontú tervezése [Ecologically oriented planning of production units]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(7), pages 863-886.
    16. Liu, Linqing & Shen, Mengyun & Sun, Da & Yan, Xiaofei & Hu, Shi, 2022. "Preferential attachment, R&D expenditure and the evolution of international trade networks from the perspective of complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    17. Qing Guan & Haizhong An & Xiaoqing Hao & Xiaoliang Jia, 2016. "The Impact of Countries’ Roles on the International Photovoltaic Trade Pattern: The Complex Networks Analysis," Sustainability, MDPI, vol. 8(4), pages 1-16, March.
    18. Julian Maluck & Reik V Donner, 2015. "A Network of Networks Perspective on Global Trade," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-24, July.
    19. Joyez, Charlie, 2017. "On the topological structure of multinationals network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 578-588.
    20. Paolo Bartesaghi & Gian Paolo Clemente & Rosanna Grassi, 2022. "Community structure in the World Trade Network based on communicability distances," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 17(2), pages 405-441, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0171184. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.