IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0137752.html
   My bibliography  Save this article

Nowcasting Intraseasonal Recreational Fishing Harvest with Internet Search Volume

Author

Listed:
  • David W Carter
  • Scott Crosson
  • Christopher Liese

Abstract

Estimates of recreational fishing harvest are often unavailable until after a fishing season has ended. This lag in information complicates efforts to stay within the quota. The simplest way to monitor quota within the season is to use harvest information from the previous year. This works well when fishery conditions are stable, but is inaccurate when fishery conditions are changing. We develop regression-based models to “nowcast” intraseasonal recreational fishing harvest in the presence of changing fishery conditions. Our basic model accounts for seasonality, changes in the fishing season, and important events in the fishery. Our extended model uses Google Trends data on the internet search volume relevant to the fishery of interest. We demonstrate the model with the Gulf of Mexico red snapper fishery where the recreational sector has exceeded the quota nearly every year since 2007. Our results confirm that data for the previous year works well to predict intraseasonal harvest for a year (2012) where fishery conditions are consistent with historic patterns. However, for a year (2013) of unprecedented harvest and management activity our regression model using search volume for the term “red snapper season” generates intraseasonal nowcasts that are 27% more accurate than the basic model without the internet search information and 29% more accurate than the prediction based on the previous year. Reliable nowcasts of intraseasonal harvest could make in-season (or in-year) management feasible and increase the likelihood of staying within quota. Our nowcasting approach using internet search volume might have the potential to improve quota management in other fisheries where conditions change year-to-year.

Suggested Citation

  • David W Carter & Scott Crosson & Christopher Liese, 2015. "Nowcasting Intraseasonal Recreational Fishing Harvest with Internet Search Volume," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-18, September.
  • Handle: RePEc:plo:pone00:0137752
    DOI: 10.1371/journal.pone.0137752
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0137752
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0137752&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0137752?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ilaria Bordino & Stefano Battiston & Guido Caldarelli & Matthieu Cristelli & Antti Ukkonen & Ingmar Weber, 2012. "Web Search Queries Can Predict Stock Market Volumes," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-17, July.
    2. Hyunyoung Choi & Hal Varian, 2012. "Predicting the Present with Google Trends," The Economic Record, The Economic Society of Australia, vol. 88(s1), pages 2-9, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Long Wen & Chang Liu & Haiyan Song, 2019. "Forecasting tourism demand using search query data: A hybrid modelling approach," Tourism Economics, , vol. 25(3), pages 309-329, May.
    2. Abay,Kibrom A. & Hirfrfot,Kibrom Tafere & Woldemichael,Andinet, 2020. "Winners and Losers from COVID-19 : Global Evidence from Google Search," Policy Research Working Paper Series 9268, The World Bank.
    3. Ahelegbey, Daniel Felix & Cerchiello, Paola & Scaramozzino, Roberta, 2022. "Network based evidence of the financial impact of Covid-19 pandemic," International Review of Financial Analysis, Elsevier, vol. 81(C).
    4. Won Sang Lee & Hyo Shin Choi & So Young Sohn, 2018. "Forecasting new product diffusion using both patent citation and web search traffic," PLOS ONE, Public Library of Science, vol. 13(4), pages 1-12, April.
    5. Abay, Kibrom A. & Ibrahim, Hosam, 2020. "Winners and losers from COVID-19: Evidence from Google search data for Egypt," MENA policy notes 8, International Food Policy Research Institute (IFPRI).
    6. Coble, David & Pincheira, Pablo, 2017. "Nowcasting Building Permits with Google Trends," MPRA Paper 76514, University Library of Munich, Germany.
    7. Jaroslav Pavlicek & Ladislav Kristoufek, 2015. "Nowcasting Unemployment Rates with Google Searches: Evidence from the Visegrad Group Countries," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-11, May.
    8. Bai, Lijuan & Yan, Xiangbin & Yu, Guang, 2019. "Impact of CEO media appearance on corporate performance in social media," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    9. Arezoo Hatefi Ghahfarrokhi & Mehrnoush Shamsfard, 2019. "Tehran Stock Exchange Prediction Using Sentiment Analysis of Online Textual Opinions," Papers 1909.03792, arXiv.org, revised Sep 2019.
    10. Agosto, Arianna & Cerchiello, Paola & Pagnottoni, Paolo, 2022. "Sentiment, Google queries and explosivity in the cryptocurrency market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    11. Takao Noguchi & Neil Stewart & Christopher Y Olivola & Helen Susannah Moat & Tobias Preis, 2014. "Characterizing the Time-Perspective of Nations with Search Engine Query Data," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-5, April.
    12. Arezoo Hatefi Ghahfarrokhi & Mehrnoush Shamsfard, 2020. "Tehran stock exchange prediction using sentiment analysis of online textual opinions," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 27(1), pages 22-37, January.
    13. Merve Alanyali & Tobias Preis & Helen Susannah Moat, 2016. "Tracking Protests Using Geotagged Flickr Photographs," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-8, March.
    14. Jichang Dong & Wei Dai & Ying Liu & Lean Yu & Jie Wang, 2019. "Forecasting Chinese Stock Market Prices using Baidu Search Index with a Learning-Based Data Collection Method," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(05), pages 1605-1629, September.
    15. Jaroslav Pavlicek & Ladislav Kristoufek, 2014. "Can Google searches help nowcast and forecast unemployment rates in the Visegrad Group countries?," Papers 1408.6639, arXiv.org.
    16. Paola Cerchiello & Paolo Giudici, 2017. "Categorical network models for systemic risk measurement," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(4), pages 1593-1609, July.
    17. Wang, Jue & Athanasopoulos, George & Hyndman, Rob J. & Wang, Shouyang, 2018. "Crude oil price forecasting based on internet concern using an extreme learning machine," International Journal of Forecasting, Elsevier, vol. 34(4), pages 665-677.
    18. Mioara, POPESCU, 2015. "Construction Of Economic Indicators Using Internet Searches," Annals of Spiru Haret University, Economic Series, Universitatea Spiru Haret, vol. 6(1), pages 25-31.
    19. Francesco Capozza & Ingar Haaland & Christopher Roth & Johannes Wohlfart, 2021. "Studying Information Acquisition in the Field: A Practical Guide and Review," CEBI working paper series 21-15, University of Copenhagen. Department of Economics. The Center for Economic Behavior and Inequality (CEBI).
    20. Tommaso Colussi & Ingo E. Isphording & Nico Pestel, 2021. "Minority Salience and Political Extremism," American Economic Journal: Applied Economics, American Economic Association, vol. 13(3), pages 237-271, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0137752. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.