IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0109436.html
   My bibliography  Save this article

The Role of Colony Size on Tunnel Branching Morphogenesis in Ant Nests

Author

Listed:
  • Jacques Gautrais
  • Jérôme Buhl
  • Sergi Valverde
  • Pascale Kuntz
  • Guy Theraulaz

Abstract

Many ant species excavate nests that are made up of chambers and interconnecting tunnels. There is a general trend of an increase in nest complexity with increasing population size. This complexity reflects a higher ramification and anastomosis of tunnels that can be estimated by the meshedness coefficient of the tunnelling networks. It has long been observed that meshedness increases with colony size within and across species, but no explanation has been provided so far. Since colony size is a strong factor controlling collective digging, a high value of the meshedness could simply be a side effect of a larger number of workers. To test this hypothesis, we study the digging dynamics in different group size of ants Messor sancta. We build a model of collective digging that is calibrated from the experimental data. Model's predictions successfully reproduce the topological properties of tunnelling networks observed in experiments, including the increase of the meshedness with group size. We then use the model to investigate situations in which collective digging progresses outward from a centre corresponding to the way tunnelling behaviour occurs in field conditions. Our model predicts that, when all other parameters are kept constant, an increase of the number of workers leads to a higher value of the meshedness and a transition from tree-like structures to highly meshed networks. Therefore we conclude that colony size is a key factor determining tunnelling network complexity in ant colonies.

Suggested Citation

  • Jacques Gautrais & Jérôme Buhl & Sergi Valverde & Pascale Kuntz & Guy Theraulaz, 2014. "The Role of Colony Size on Tunnel Branching Morphogenesis in Ant Nests," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-11, October.
  • Handle: RePEc:plo:pone00:0109436
    DOI: 10.1371/journal.pone.0109436
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0109436
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0109436&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0109436?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. J. Buhl & J. Gautrais & R. Solé & P. Kuntz & S. Valverde & J. Deneubourg & G. Theraulaz, 2004. "Efficiency and robustness in ant networks of galleries," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 42(1), pages 123-129, November.
    2. Kühnert, Christian & Helbing, Dirk & West, Geoffrey B., 2006. "Scaling laws in urban supply networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 363(1), pages 96-103.
    3. Anaïs Khuong & Valentin Lecheval & Richard Fournier & Stéphane Blanco & Sébastian Weitz & Jean-Jacques Bezian & Jacques Gautrais, 2013. "How Do Ants Make Sense of Gravity? A Boltzmann Walker Analysis of Lasius niger Trajectories on Various Inclines," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-17, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elliott, Robert J.R. & Sun, Puyang & Xu, Qiqin, 2015. "Energy distribution and economic growth: An empirical test for China," Energy Economics, Elsevier, vol. 48(C), pages 24-31.
    2. Chen, Yanguang, 2014. "An allometric scaling relation based on logistic growth of cities," Chaos, Solitons & Fractals, Elsevier, vol. 65(C), pages 65-77.
    3. Denise PUMAIN, 2012. "Une Théorie Géographique Pour La Loi De Zipf," Region et Developpement, Region et Developpement, LEAD, Universite du Sud - Toulon Var, vol. 36, pages 31-54.
    4. Joao Meirelles & Camilo Rodrigues Neto & Fernando Fagundes Ferreira & Fabiano Lemes Ribeiro & Claudia Rebeca Binder, 2018. "Evolution of urban scaling: Evidence from Brazil," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-15, October.
    5. Lia Papadopoulos & Pablo Blinder & Henrik Ronellenfitsch & Florian Klimm & Eleni Katifori & David Kleinfeld & Danielle S Bassett, 2018. "Comparing two classes of biological distribution systems using network analysis," PLOS Computational Biology, Public Library of Science, vol. 14(9), pages 1-31, September.
    6. Zhang, Tong & Zeng, Zhe & Jia, Tao & Li, Jing, 2016. "Examining the amenability of urban street networks for locating facilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 469-479.
    7. Xu, Gang & Xu, Zhibang & Gu, Yanyan & Lei, Weiqian & Pan, Yupiao & Liu, Jie & Jiao, Limin, 2020. "Scaling laws in intra-urban systems and over time at the district level in Shanghai, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    8. Cura, Robin & Cottineau, Clémentine & Swerts, Elfie & Ignazzi, Cosmo Antonio & Bretagnolle, Anne & Vacchiani-Marcuzzo, Celine & Pumain, Denise, 2017. "The Old and the New: Qualifying City Systems in the World with Classical Models and New Data," SocArXiv pbzn6, Center for Open Science.
    9. Dalgaard, Carl-Johan & Strulik, Holger, 2011. "Energy distribution and economic growth," Resource and Energy Economics, Elsevier, vol. 33(4), pages 782-797.
    10. Fábio Duarte & Ricardo Álvarez, 2019. "The data politics of the urban age," Palgrave Communications, Palgrave Macmillan, vol. 5(1), pages 1-7, December.
    11. Cheng, Lu & Mi, Zhifu & Sudmant, Andrew & Coffman, D'Maris, 2022. "Bigger cities better climate? Results from an analysis of urban areas in China," Energy Economics, Elsevier, vol. 107(C).
    12. Viana, Matheus P. & Fourcassié, Vincent & Perna, Andrea & Costa, Luciano da F. & Jost, Christian, 2013. "Accessibility in networks: A useful measure for understanding social insect nest architecture," Chaos, Solitons & Fractals, Elsevier, vol. 46(C), pages 38-45.
    13. Jung-Hun Yang & Kwang-Woo Nam, 2022. "Modelling the Relationship of Infrastructure and Externalities Using Urban Scaling," Sustainability, MDPI, vol. 14(9), pages 1-17, April.
    14. David Levinson, 2012. "Network Structure and City Size," PLOS ONE, Public Library of Science, vol. 7(1), pages 1-11, January.
    15. Chen, Yanguang, 2017. "Multi-scaling allometric analysis for urban and regional development," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 673-689.
    16. Guénaël Cabanes & Ellen van Wilgenburg & Madeleine Beekman & Tanya Latty, 2015. "Ants build transportation networks that optimize cost and efficiency at the expense of robustness," Behavioral Ecology, International Society for Behavioral Ecology, vol. 26(1), pages 223-231.
    17. Zhang, Jiang & Yu, Tongkui, 2010. "Allometric scaling of countries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4887-4896.
    18. Fabiano L Ribeiro & Joao Meirelles & Vinicius M Netto & Camilo Rodrigues Neto & Andrea Baronchelli, 2020. "On the relation between transversal and longitudinal scaling in cities," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-20, May.
    19. Sohouenou, Philippe Y.R. & Christidis, Panayotis & Christodoulou, Aris & Neves, Luis A.C. & Presti, Davide Lo, 2020. "Using a random road graph model to understand road networks robustness to link failures," International Journal of Critical Infrastructure Protection, Elsevier, vol. 29(C).
    20. Wang, Ping & Gu, Changgui & Yang, Huijie & Wang, Haiying, 2022. "The multi-scale structural complexity of urban morphology in China," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0109436. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.