IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0028966.html
   My bibliography  Save this article

Understanding and Classifying Metabolite Space and Metabolite-Likeness

Author

Listed:
  • Julio E Peironcely
  • Theo Reijmers
  • Leon Coulier
  • Andreas Bender
  • Thomas Hankemeier

Abstract

While the entirety of ‘Chemical Space’ is huge (and assumed to contain between 1063 and 10200 ‘small molecules’), distinct subsets of this space can nonetheless be defined according to certain structural parameters. An example of such a subspace is the chemical space spanned by endogenous metabolites, defined as ‘naturally occurring’ products of an organisms' metabolism. In order to understand this part of chemical space in more detail, we analyzed the chemical space populated by human metabolites in two ways. Firstly, in order to understand metabolite space better, we performed Principal Component Analysis (PCA), hierarchical clustering and scaffold analysis of metabolites and non-metabolites in order to analyze which chemical features are characteristic for both classes of compounds. Here we found that heteroatom (both oxygen and nitrogen) content, as well as the presence of particular ring systems was able to distinguish both groups of compounds. Secondly, we established which molecular descriptors and classifiers are capable of distinguishing metabolites from non-metabolites, by assigning a ‘metabolite-likeness’ score. It was found that the combination of MDL Public Keys and Random Forest exhibited best overall classification performance with an AUC value of 99.13%, a specificity of 99.84% and a selectivity of 88.79%. This performance is slightly better than previous classifiers; and interestingly we found that drugs occupy two distinct areas of metabolite-likeness, the one being more ‘synthetic’ and the other being more ‘metabolite-like’. Also, on a truly prospective dataset of 457 compounds, 95.84% correct classification was achieved. Overall, we are confident that we contributed to the tasks of classifying metabolites, as well as to understanding metabolite chemical space better. This knowledge can now be used in the development of new drugs that need to resemble metabolites, and in our work particularly for assessing the metabolite-likeness of candidate molecules during metabolite identification in the metabolomics field.

Suggested Citation

  • Julio E Peironcely & Theo Reijmers & Leon Coulier & Andreas Bender & Thomas Hankemeier, 2011. "Understanding and Classifying Metabolite Space and Metabolite-Likeness," PLOS ONE, Public Library of Science, vol. 6(12), pages 1-14, December.
  • Handle: RePEc:plo:pone00:0028966
    DOI: 10.1371/journal.pone.0028966
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0028966
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0028966&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0028966?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lê, Sébastien & Josse, Julie & Husson, François, 2008. "FactoMineR: An R Package for Multivariate Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 25(i01).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karin Kauer & Sandra Pärnpuu & Liina Talgre & Viacheslav Eremeev & Anne Luik, 2021. "Soil Particulate and Mineral-Associated Organic Matter Increases in Organic Farming under Cover Cropping and Manure Addition," Agriculture, MDPI, vol. 11(9), pages 1-23, September.
    2. Surun, Clément & Drechsler, Martin, 2018. "Effectiveness of Tradable Permits for the Conservation of Metacommunities With Two Competing Species," Ecological Economics, Elsevier, vol. 147(C), pages 189-196.
    3. Jan Kluge & Sarah Lappöhn & Kerstin Plank, 2023. "Predictors of TFP growth in European countries," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 50(1), pages 109-140, February.
    4. Navarro-Miró, D. & Iocola, I. & Persiani, A. & Blanco-Moreno, J.M. & Kristensen, H. Lakkenborg & Hefner, M. & Tamm, K. & Bender, I. & Védie, H. & Willekens, K. & Diacono, M. & Montemurro, F. & Sans, F, 2019. "Energy flows in European organic vegetable systems: Effects of the introduction and management of agroecological service crops," Energy, Elsevier, vol. 188(C).
    5. Alexander Platzer & Thomas Nussbaumer & Thomas Karonitsch & Josef S Smolen & Daniel Aletaha, 2019. "Analysis of gene expression in rheumatoid arthritis and related conditions offers insights into sex-bias, gene biotypes and co-expression patterns," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-23, July.
    6. Baccar, Mariem & Raynal, Hélène & Sekhar, Muddu & Bergez, Jacques-Eric & Willaume, Magali & Casel, Pierre & Giriraj, P. & Murthy, Sanjeeva & Ruiz, Laurent, 2023. "Dynamics of crop category choices reveal strategies and tactics used by smallholder farmers in India to cope with unreliable water availability," Agricultural Systems, Elsevier, vol. 211(C).
    7. Aditi Sahu & Kivanc Kose & Lukas Kraehenbuehl & Candice Byers & Aliya Holland & Teguru Tembo & Anthony Santella & Anabel Alfonso & Madison Li & Miguel Cordova & Melissa Gill & Christi Fox & Salvador G, 2022. "In vivo tumor immune microenvironment phenotypes correlate with inflammation and vasculature to predict immunotherapy response," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    8. Joy R. Petway & Yu-Pin Lin & Rainer F. Wunderlich, 2019. "Analyzing Opinions on Sustainable Agriculture: Toward Increasing Farmer Knowledge of Organic Practices in Taiwan-Yuanli Township," Sustainability, MDPI, vol. 11(14), pages 1-27, July.
    9. Pabitra Joshi & Guriqbal Singh Dhillon & Yaotian Gao & Amandeep Kaur & Justin Wheeler & Jianli Chen, 2024. "An Optimal Model to Improve Genomic Prediction for Protein Content and Test Weight in a Diverse Spring Wheat Panel," Agriculture, MDPI, vol. 14(3), pages 1-16, February.
    10. Nichiforel, Liviu & Keary, Kevin & Deuffic, Philippe & Weiss, Gerhard & Thorsen, Bo Jellesmark & Winkel, Georg & Avdibegović, Mersudin & Dobšinská, Zuzana & Feliciano, Diana & Gatto, Paola & Gorriz Mi, 2018. "How private are Europe’s private forests? A comparative property rights analysis," Land Use Policy, Elsevier, vol. 76(C), pages 535-552.
    11. Roopam Shukla & Ankit Agarwal & Kamna Sachdeva & Juergen Kurths & P. K. Joshi, 2019. "Climate change perception: an analysis of climate change and risk perceptions among farmer types of Indian Western Himalayas," Climatic Change, Springer, vol. 152(1), pages 103-119, January.
    12. Cholez, Celia & Pauly, Olivier & Mahdad, Maral & Mehrabi, Sepide & Giagnocavo, Cynthia & Bijman, Jos, 2023. "Heterogeneity of inter-organizational collaborations in agrifood chain sustainability-oriented innovations," Agricultural Systems, Elsevier, vol. 212(C).
    13. Loc, Ho Huu & Park, Edward & Thu, Tran Ngoc & Diep, Nguyen Thi Hong & Can, Nguyen Trong, 2021. "An enhanced analytical framework of participatory GIS for ecosystem services assessment applied to a Ramsar wetland site in the Vietnam Mekong Delta," Ecosystem Services, Elsevier, vol. 48(C).
    14. Florence Jacquet & A Aboul-Naga & Bernard Hubert, 2020. "The contribution of ARIMNet to address livestock systems resilience in the Mediterranean region," Post-Print hal-03625860, HAL.
    15. Juan García-Quezada & Ricardo Musule-Lagunes & José Angel Prieto-Ruíz & Daniel José Vega-Nieva & Artemio Carrillo-Parra, 2022. "Evaluation of Four Types of Kilns Used to Produce Charcoal from Several Tree Species in Mexico," Energies, MDPI, vol. 16(1), pages 1-22, December.
    16. Marika Vitali & Paolo Bosi & Elena Santacroce & Paolo Trevisi, 2021. "The multivariate approach identifies relationships between pre-slaughter factors, body lesions, ham defects and carcass traits in pigs," PLOS ONE, Public Library of Science, vol. 16(5), pages 1-14, May.
    17. Ariane F. Busso-Lopes & Leandro X. Neves & Guilherme A. Câmara & Daniela C. Granato & Marco Antônio M. Pretti & Henry Heberle & Fábio M. S. Patroni & Jamile Sá & Sami Yokoo & César Rivera & Romênia R., 2022. "Connecting multiple microenvironment proteomes uncovers the biology in head and neck cancer," Nature Communications, Nature, vol. 13(1), pages 1-24, December.
    18. Silvana Nisgoski & Joielan Xipaia dos Santos & Helena Cristina Vieira & Tawani Lorena Naide & Rafaela Stange & Washington Duarte Silva da Silva & Deivison Venicio Souza & Natally Celestino Gama & Márc, 2023. "Provenance Identification of Leaves and Nuts of Bertholletia excelsa Bonpl by Near-Infrared Spectroscopy and Color Parameters for Sustainable Extraction," Sustainability, MDPI, vol. 15(21), pages 1-15, November.
    19. Mailu, Stephen & Will, Margret & Mwanza, Rosemary & Nkanata, Kinyua & Mbugua, David, 2014. "Milk supply contracts and default incidence in Kenya," MPRA Paper 57381, University Library of Munich, Germany, revised 10 Apr 2014.
    20. Igor Barahona & Daría Micaela Hernández & Héctor Hugo Pérez-Villarreal & María Pilar Martínez-Ruíz, 2018. "Identifying research topics in marketing science along the past decade: a content analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(1), pages 293-312, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0028966. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.