IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1000721.html
   My bibliography  Save this article

The Impact of Contact Tracing in Clustered Populations

Author

Listed:
  • Thomas House
  • Matt J Keeling

Abstract

The tracing of potentially infectious contacts has become an important part of the control strategy for many infectious diseases, from early cases of novel infections to endemic sexually transmitted infections. Here, we make use of mathematical models to consider the case of partner notification for sexually transmitted infection, however these models are sufficiently simple to allow more general conclusions to be drawn. We show that, when contact network structure is considered in addition to contact tracing, standard “mass action” models are generally inadequate. To consider the impact of mutual contacts (specifically clustering) we develop an improvement to existing pairwise network models, which we use to demonstrate that ceteris paribus, clustering improves the efficacy of contact tracing for a large region of parameter space. This result is sometimes reversed, however, for the case of highly effective contact tracing. We also develop stochastic simulations for comparison, using simple re-wiring methods that allow the generation of appropriate comparator networks. In this way we contribute to the general theory of network-based interventions against infectious disease.Author Summary: There are multiple ways to control infectious diseases—vaccination and drugs such as antibiotics or anti-virals form part of the pharmaceutical approach, however another route is to stop people infecting each other. This can be done either through general efforts to reduce epidemiologically relevant contacts, or through a more targeted attempt to trace the contacts of known cases who can then be isolated or treated. The impact of this kind of contact tracing is a priori likely to depend strongly on the network of contacts linking people together. In this paper, we develop new mathematical and computational techniques to model the impact of clustering: the probability that any two contacts of a given individual are also linked to each other in the network, creating triangles. Often, and for intuitively understandable reasons, the presence of clustering increases the efficacy of contact tracing, however we show that in the regime of highly effective contact tracing sometimes the opposite is true.

Suggested Citation

  • Thomas House & Matt J Keeling, 2010. "The Impact of Contact Tracing in Clustered Populations," PLOS Computational Biology, Public Library of Science, vol. 6(3), pages 1-9, March.
  • Handle: RePEc:plo:pcbi00:1000721
    DOI: 10.1371/journal.pcbi.1000721
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000721
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1000721&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1000721?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michael J. Tildesley & Nicholas J. Savill & Darren J. Shaw & Rob Deardon & Stephen P. Brooks & Mark E. J. Woolhouse & Bryan T. Grenfell & Matt J. Keeling, 2006. "Optimal reactive vaccination strategies for a foot-and-mouth outbreak in the UK," Nature, Nature, vol. 440(7080), pages 83-86, March.
    2. Neil M. Ferguson & Christl A. Donnelly & Roy M. Anderson, 2001. "Transmission intensity and impact of control policies on the foot and mouth epidemic in Great Britain," Nature, Nature, vol. 413(6855), pages 542-548, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. de Espíndola, Aquino L. & Girardi, Daniel & Penna, T.J.P. & Bauch, Chris T. & Troca Cabella, Brenno C. & Martinez, Alexandre Souto, 2014. "An antibiotic protocol to minimize emergence of drug-resistant tuberculosis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 400(C), pages 80-92.
    2. Kenji Mizumoto & Keisuke Ejima & Taro Yamamoto & Hiroshi Nishiura, 2013. "Vaccination and Clinical Severity: Is the Effectiveness of Contact Tracing and Case Isolation Hampered by Past Vaccination?," IJERPH, MDPI, vol. 10(3), pages 1-14, February.
    3. Ben R. Craig & Tom Phelan & Jan-Peter Siedlarek & Jared Steinberg, 2021. "Two Approaches to Predicting the Path of the COVID-19 Pandemic: Is One Better?," Economic Commentary, Federal Reserve Bank of Cleveland, vol. 2021(10), pages 1-8, April.
    4. Vickers, David M. & Osgood, Nathaniel D., 2014. "The arrested immunity hypothesis in an immunoepidemiological model of Chlamydia transmission," Theoretical Population Biology, Elsevier, vol. 93(C), pages 52-62.
    5. Ben R. Craig & Tom Phelan & Jan-Peter Siedlarek & Jared Steinberg, 2020. "Improving Epidemic Modeling with Networks," Economic Commentary, Federal Reserve Bank of Cleveland, vol. 2020(23), pages 1-8, September.
    6. Paras Bhatt & Naga Vemprala & Rohit Valecha & Govind Hariharan & H. Raghav Rao, 2023. "User Privacy, Surveillance and Public Health during COVID-19 – An Examination of Twitterverse," Information Systems Frontiers, Springer, vol. 25(5), pages 1667-1682, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rob Deardon & Babak Habibzadeh & Hau Yi Chung, 2012. "Spatial measurement error in infectious disease models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(5), pages 1139-1150, November.
    2. Maud Marsot & Séverine Rautureau & Barbara Dufour & Benoit Durand, 2014. "Impact of Stakeholders Influence, Geographic Level and Risk Perception on Strategic Decisions in Simulated Foot and Mouth Disease Epizootics in France," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-16, January.
    3. Ian E. Fellows & Mark S. Handcock, 2023. "Modeling of networked populations when data is sampled or missing," METRON, Springer;Sapienza Università di Roma, vol. 81(1), pages 21-35, April.
    4. Stefan Sellman & Kimberly Tsao & Michael J Tildesley & Peter Brommesson & Colleen T Webb & Uno Wennergren & Matt J Keeling & Tom Lindström, 2018. "Need for speed: An optimized gridding approach for spatially explicit disease simulations," PLOS Computational Biology, Public Library of Science, vol. 14(4), pages 1-27, April.
    5. Ioannidis, John P.A. & Cripps, Sally & Tanner, Martin A., 2022. "Forecasting for COVID-19 has failed," International Journal of Forecasting, Elsevier, vol. 38(2), pages 423-438.
    6. Rorres, Chris & Pelletier, Sky T.K. & Keeling, Matt J. & Smith, Gary, 2010. "Estimating the kernel parameters of premises-based stochastic models of farmed animal infectious disease epidemics using limited, incomplete, or ongoing data," Theoretical Population Biology, Elsevier, vol. 78(1), pages 46-53.
    7. Don Klinkenberg & Christophe Fraser & Hans Heesterbeek, 2006. "The Effectiveness of Contact Tracing in Emerging Epidemics," PLOS ONE, Public Library of Science, vol. 1(1), pages 1-7, December.
    8. Krämer, J. & Farwick, J., 2009. "Schäden in der Landwirtschaft durch Maul- und Klauenseuche: Simulationsrechnungen für ausgewählte Modellregionen," Proceedings “Schriften der Gesellschaft für Wirtschafts- und Sozialwissenschaften des Landbaues e.V.”, German Association of Agricultural Economists (GEWISOLA), vol. 44, March.
    9. David Schley & Simon Gubbins & David J Paton, 2009. "Quantifying the Risk of Localised Animal Movement Bans for Foot-and-Mouth Disease," PLOS ONE, Public Library of Science, vol. 4(5), pages 1-6, May.
    10. Rakowski, Franciszek & Gruziel, Magdalena & Bieniasz-Krzywiec, Łukasz & Radomski, Jan P., 2010. "Influenza epidemic spread simulation for Poland — a large scale, individual based model study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(16), pages 3149-3165.
    11. Pilwon Kim & Chang Hyeong Lee, 2018. "Epidemic Spreading in Complex Networks with Resilient Nodes: Applications to FMD," Complexity, Hindawi, vol. 2018, pages 1-9, March.
    12. Wenting Yang & Jiantong Zhang & Ruolin Ma, 2020. "The Prediction of Infectious Diseases: A Bibliometric Analysis," IJERPH, MDPI, vol. 17(17), pages 1-19, August.
    13. Tom Kompas & Pham Van Ha & Hoa-Thi-Minh Nguyen & Graeme Garner & Sharon Roche & Iain East, 2020. "Optimal surveillance against foot-and-mouth disease: A sample average approximation approach," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-21, July.
    14. Kompas, Tom & Ha, Pham Van & Nguyen, Hoa Thi Minh & East, Iain & Roche, Sharon & Garner, Graeme, 2017. "Optimal surveillance against foot-and-mouth disease: the case of bulk milk testing in Australia," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 61(4), October.
    15. Montazeri Hesam & Mozaffarilegha Mozhgan & Little Susan & Beerenwinkel Niko & DeGruttola Victor, 2020. "Bayesian reconstruction of transmission trees from genetic sequences and uncertain infection times," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 19(4-6), pages 1-13, December.
    16. Tom Lindström & Daniel A Grear & Michael Buhnerkempe & Colleen T Webb & Ryan S Miller & Katie Portacci & Uno Wennergren, 2013. "A Bayesian Approach for Modeling Cattle Movements in the United States: Scaling up a Partially Observed Network," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-11, January.
    17. Larry Stikeleather & William Morrow & Robert Meyer & Craig Baird & Burt Halbert, 2013. "Evaluation of CO 2 Application Requirements for On-Farm Mass Depopulation of Swine in a Disease Emergency," Agriculture, MDPI, vol. 3(4), pages 1-14, September.
    18. McKinley Trevelyan & Cook Alex R & Deardon Robert, 2009. "Inference in Epidemic Models without Likelihoods," The International Journal of Biostatistics, De Gruyter, vol. 5(1), pages 1-40, July.
    19. Peter Brommesson & Uno Wennergren & Tom Lindström, 2016. "Spatiotemporal Variation in Distance Dependent Animal Movement Contacts: One Size Doesn’t Fit All," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-20, October.
    20. Alzahrani, Abdullah K. & Alshomrani, Ali Saleh & Pal, Nikhil & Samanta, Sudip, 2018. "Study of an eco-epidemiological model with Z-type control," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 197-208.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1000721. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.