IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v62y2011i4d10.1057_jors.2010.22.html
   My bibliography  Save this article

Canadian forces global reach support hubs: facility location and aircraft routing models

Author

Listed:
  • A Ghanmi

    (Defence Research and Development Canada—Centre for Operational Research and Analysis)

Abstract

The Canadian Forces (CF) is seeking to establish permanent and temporary operational support hubs at strategic locations around the globe to improve its logistics support effectiveness and responsiveness for deployed operations. This paper addresses two logistics problems associated with the hub-based support concept, namely, hub location optimization and aircraft routing problems. A discrete facility location model was developed to analyse the hub-based support effectiveness and to determine the optimal hub locations. An aircraft routing model was also developed to determine optimal aircraft routes for the movement of cargo and supplies from various support hubs to a theatre of operation. Both models were formulated using mixed integer nonlinear programming. Historical CF deployment and sustainment data were used to conduct the analysis and to illustrate the methodology. The study indicates that the hub-based support approach would offer potential cost avoidance on sustainment lift and could be an effective strategy for improvement of the CF's support capability. It also indicates that potential lift costs could be avoided through optimal routing of sustainment flights.

Suggested Citation

  • A Ghanmi, 2011. "Canadian forces global reach support hubs: facility location and aircraft routing models," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(4), pages 638-650, April.
  • Handle: RePEc:pal:jorsoc:v:62:y:2011:i:4:d:10.1057_jors.2010.22
    DOI: 10.1057/jors.2010.22
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/jors.2010.22
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/jors.2010.22?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jean-Yves Potvin & Samy Bengio, 1996. "The Vehicle Routing Problem with Time Windows Part II: Genetic Search," INFORMS Journal on Computing, INFORMS, vol. 8(2), pages 165-172, May.
    2. Troncoso, Juan J. & Garrido, Rodrigo A., 2005. "Forestry production and logistics planning: an analysis using mixed-integer programming," Forest Policy and Economics, Elsevier, vol. 7(4), pages 625-633, May.
    3. Jean-Yves Potvin & Tanguy Kervahut & Bruno-Laurent Garcia & Jean-Marc Rousseau, 1996. "The Vehicle Routing Problem with Time Windows Part I: Tabu Search," INFORMS Journal on Computing, INFORMS, vol. 8(2), pages 158-164, May.
    4. K Y K Ng & A Ghanmi, 2002. "An automated surface surveillance system," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(7), pages 697-708, July.
    5. Michel Gendreau & Alain Hertz & Gilbert Laporte, 1994. "A Tabu Search Heuristic for the Vehicle Routing Problem," Management Science, INFORMS, vol. 40(10), pages 1276-1290, October.
    6. Martin Desrochers & Jacques Desrosiers & Marius Solomon, 1992. "A New Optimization Algorithm for the Vehicle Routing Problem with Time Windows," Operations Research, INFORMS, vol. 40(2), pages 342-354, April.
    7. Kulkarni, R. V. & Bhave, P. R., 1985. "Integer programming formulations of vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 20(1), pages 58-67, April.
    8. Kara, Imdat & Laporte, Gilbert & Bektas, Tolga, 2004. "A note on the lifted Miller-Tucker-Zemlin subtour elimination constraints for the capacitated vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 158(3), pages 793-795, November.
    9. A Ghanmi & R H A D Shaw, 2008. "Modelling and analysis of Canadian Forces strategic lift and pre-positioning options," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(12), pages 1591-1602, December.
    10. Bartholomew-Biggs, M. C. & Parkhurst, S. C. & Wilson, S. P., 2003. "Global optimization approaches to an aircraft routing problem," European Journal of Operational Research, Elsevier, vol. 146(2), pages 417-431, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joaquín Pacheco & Rafael Caballero & Manuel Laguna & Julián Molina, 2013. "Bi-Objective Bus Routing: An Application to School Buses in Rural Areas," Transportation Science, INFORMS, vol. 47(3), pages 397-411, August.
    2. Liu, Fuh-Hwa Franklin & Shen, Sheng-Yuan, 1999. "A route-neighborhood-based metaheuristic for vehicle routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 118(3), pages 485-504, November.
    3. Olli Bräysy & Michel Gendreau, 2005. "Vehicle Routing Problem with Time Windows, Part II: Metaheuristics," Transportation Science, INFORMS, vol. 39(1), pages 119-139, February.
    4. Ghosh, Diptesh & Sumanta Basu, 2011. "Diversified Local Search for the Traveling Salesman Problem," IIMA Working Papers WP2011-01-03, Indian Institute of Management Ahmedabad, Research and Publication Department.
    5. Baozhen Yao & Qianqian Yan & Mengjie Zhang & Yunong Yang, 2017. "Improved artificial bee colony algorithm for vehicle routing problem with time windows," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-18, September.
    6. Hong, Sung-Chul & Park, Yang-Byung, 1999. "A heuristic for bi-objective vehicle routing with time window constraints," International Journal of Production Economics, Elsevier, vol. 62(3), pages 249-258, September.
    7. Taillard, Eric D. & Gambardella, Luca M. & Gendreau, Michel & Potvin, Jean-Yves, 2001. "Adaptive memory programming: A unified view of metaheuristics," European Journal of Operational Research, Elsevier, vol. 135(1), pages 1-16, November.
    8. Sumanta Basu & Ghosh, Diptesh, 2008. "A review of the Tabu Search Literature on Traveling Salesman Problems," IIMA Working Papers WP2008-10-01, Indian Institute of Management Ahmedabad, Research and Publication Department.
    9. İbrahim Muter & Ş. İlker Birbil & Güvenç Şahin, 2010. "Combination of Metaheuristic and Exact Algorithms for Solving Set Covering-Type Optimization Problems," INFORMS Journal on Computing, INFORMS, vol. 22(4), pages 603-619, November.
    10. Schneider, Michael & Schwahn, Fabian & Vigo, Daniele, 2017. "Designing granular solution methods for routing problems with time windows," European Journal of Operational Research, Elsevier, vol. 263(2), pages 493-509.
    11. G W Kinney & R R Hill & J T Moore, 2005. "Devising a quick-running heuristic for an unmanned aerial vehicle (UAV) routing system," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(7), pages 776-786, July.
    12. Baldacci, Roberto & Mingozzi, Aristide & Roberti, Roberto, 2012. "Recent exact algorithms for solving the vehicle routing problem under capacity and time window constraints," European Journal of Operational Research, Elsevier, vol. 218(1), pages 1-6.
    13. Kandula, Shanthan & Krishnamoorthy, Srikumar & Roy, Debjit, 2020. "A Predictive and Prescriptive Analytics Framework for Efficient E-Commerce Order Delivery," IIMA Working Papers WP 2020-11-01, Indian Institute of Management Ahmedabad, Research and Publication Department.
    14. Derigs, U. & Kaiser, R., 2007. "Applying the attribute based hill climber heuristic to the vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 177(2), pages 719-732, March.
    15. Müller, Juliane, 2010. "Approximative solutions to the bicriterion Vehicle Routing Problem with Time Windows," European Journal of Operational Research, Elsevier, vol. 202(1), pages 223-231, April.
    16. Bochra Rabbouch & Foued Saâdaoui & Rafaa Mraihi, 2021. "Efficient implementation of the genetic algorithm to solve rich vehicle routing problems," Operational Research, Springer, vol. 21(3), pages 1763-1791, September.
    17. Davis, Lauren B. & Sengul, Irem & Ivy, Julie S. & Brock, Luther G. & Miles, Lastella, 2014. "Scheduling food bank collections and deliveries to ensure food safety and improve access," Socio-Economic Planning Sciences, Elsevier, vol. 48(3), pages 175-188.
    18. Russell Bent & Pascal Van Hentenryck, 2004. "A Two-Stage Hybrid Local Search for the Vehicle Routing Problem with Time Windows," Transportation Science, INFORMS, vol. 38(4), pages 515-530, November.
    19. Andrew Lim & Xingwen Zhang, 2007. "A Two-Stage Heuristic with Ejection Pools and Generalized Ejection Chains for the Vehicle Routing Problem with Time Windows," INFORMS Journal on Computing, INFORMS, vol. 19(3), pages 443-457, August.
    20. Furkan Uzar, M. & Çatay, Bülent, 2012. "Distribution planning of bulk lubricants at BP Turkey," Omega, Elsevier, vol. 40(6), pages 870-881.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:62:y:2011:i:4:d:10.1057_jors.2010.22. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.