IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v57y2006i4d10.1057_palgrave.jors.2602024.html
   My bibliography  Save this article

Improving harvesting and transport planning within a sugar value chain

Author

Listed:
  • A J Higgins

    (CSIRO Sustainable Ecosystems, Queensland Bioscience Precinct)

  • L A Laredo

    (CSIRO Sustainable Ecosystems, Queensland Bioscience Precinct)

Abstract

Recent economic pressures have forced the Australian sugar industry to achieve better integration and optimization of the cane harvesting and transport sectors of the value chain. The logistical and economic complexity of the harvesting and transport system was captured through the development of a modelling framework that effectively links several component models that describe the parts of the system. Through engaging in participatory research with representatives of a sugar region located at the north-east coast of Australia, we use this modelling framework to address some key industry issues in rationalizing rail track infrastructure and re-organizing harvesting. These issues were addressed by building component models for the modelling framework in the field of location science, namely the capacitated P-Median problem and spatial clustering. By applying the modelling framework and its component models to the case-study region, we explored a range of scenarios with a net cost reduction of up to AU$2 260 000 per year.

Suggested Citation

  • A J Higgins & L A Laredo, 2006. "Improving harvesting and transport planning within a sugar value chain," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(4), pages 367-376, April.
  • Handle: RePEc:pal:jorsoc:v:57:y:2006:i:4:d:10.1057_palgrave.jors.2602024
    DOI: 10.1057/palgrave.jors.2602024
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/palgrave.jors.2602024
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/palgrave.jors.2602024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Martin, Adrienne & Sherington, John, 1997. "Participatory research methods--Implementation, effectiveness and institutional context," Agricultural Systems, Elsevier, vol. 55(2), pages 195-216, October.
    2. Thomas A. Feo & Mauricio G. C. Resende & Stuart H. Smith, 1994. "A Greedy Randomized Adaptive Search Procedure for Maximum Independent Set," Operations Research, INFORMS, vol. 42(5), pages 860-878, October.
    3. Gigler, J. K. & Hendrix, E. M. T. & Heesen, R. A. & van den Hazelkamp, V. G. W. & Meerdink, G., 2002. "On optimisation of agri chains by dynamic programming," European Journal of Operational Research, Elsevier, vol. 139(3), pages 613-625, June.
    4. Kropff, M. J. & Bouma, J. & Jones, J. W., 2001. "Systems approaches for the design of sustainable agro-ecosystems," Agricultural Systems, Elsevier, vol. 70(2-3), pages 369-393.
    5. Bernet, T. & Ortiz, O. & Estrada, R. D. & Quiroz, R. & Swinton, S. M., 2001. "Tailoring agricultural extension to different production contexts: a user-friendly farm-household model to improve decision-making for participatory research," Agricultural Systems, Elsevier, vol. 69(3), pages 183-198, September.
    6. Agrell, Per J. & Stam, Antonie & Fischer, Gunther W., 2004. "Interactive multiobjective agro-ecological land use planning: The Bungoma region in Kenya," European Journal of Operational Research, Elsevier, vol. 158(1), pages 194-217, October.
    7. Ruben, Ruerd & Moll, Henk & Kuyvenhoven, Arie, 1998. "Integrating agricultural research and policy analysis: analytical framework and policy applications for bio-economic modelling," Agricultural Systems, Elsevier, vol. 58(3), pages 331-349, November.
    8. Higgins, Andrew J. & Muchow, Russell C., 2003. "Assessing the potential benefits of alternative cane supply arrangements in the Australian sugar industry," Agricultural Systems, Elsevier, vol. 76(2), pages 623-638, May.
    9. Andrew J. Higgins, 2002. "Australian Sugar Mills Optimize Harvester Rosters to Improve Production," Interfaces, INFORMS, vol. 32(3), pages 15-25, June.
    10. Manuel Laguna & Thomas A. Feo & Hal C. Elrod, 1994. "A Greedy Randomized Adaptive Search Procedure for the Two-Partition Problem," Operations Research, INFORMS, vol. 42(4), pages 677-687, August.
    11. Gladwin, Christina H. & Peterson, Jennifer S. & Mwale, Abiud C., 2002. "The Quality of Science in Participatory Research: A Case Study from Eastern Zambia," World Development, Elsevier, vol. 30(4), pages 523-543, April.
    12. Douthwaite, B. & Keatinge, J. D. H. & Park, J. R., 2002. "Learning selection: an evolutionary model for understanding, implementing and evaluating participatory technology development," Agricultural Systems, Elsevier, vol. 72(2), pages 109-131, May.
    13. Alberto, I. & Azcarate, C. & Mallor, F. & Mateo, P. M., 2002. "Optimization with simulation and multiobjective analysis in industrial decision-making: A case study," European Journal of Operational Research, Elsevier, vol. 140(2), pages 373-383, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leonardo Rivera-Cadavid & Pablo Cesar Manyoma-Velásquez & Diego F. Manotas-Duque, 2019. "Supply Chain Optimization for Energy Cogeneration Using Sugarcane Crop Residues (SCR)," Sustainability, MDPI, vol. 11(23), pages 1-15, November.
    2. Tuğçe Taşkıner & Bilge Bilgen, 2021. "Optimization Models for Harvest and Production Planning in Agri-Food Supply Chain: A Systematic Review," Logistics, MDPI, vol. 5(3), pages 1-27, August.
    3. Kamal Lamsal & Philip C. Jones & Barrett W. Thomas, 2017. "Sugarcane Harvest Logistics in Brazil," Transportation Science, INFORMS, vol. 51(2), pages 771-789, May.
    4. Marius Drechsler & Andreas Holzapfel, 2022. "Decision Support in Horticultural Supply Chains: A Planning Problem Framework for Small and Medium-Sized Enterprises," Agriculture, MDPI, vol. 12(11), pages 1-25, November.
    5. Piewthongngam, Kullapapruk & Pathumnakul, Supachai & Setthanan, Kanchana, 2009. "Application of crop growth simulation and mathematical modeling to supply chain management in the Thai sugar industry," Agricultural Systems, Elsevier, vol. 102(1-3), pages 58-66, October.
    6. Helenice de O. Florentino & Dylan F. Jones & Chandra Ade Irawan & Djamila Ouelhadj & Banafesh Khosravi & Daniela R. Cantane, 2022. "An optimization model for combined selecting, planting and harvesting sugarcane varieties," Annals of Operations Research, Springer, vol. 314(2), pages 451-469, July.
    7. Camila de Lima & Antonio Roberto Balbo & Thiago Pedro Donadon Homem & Helenice de Oliveira Florentino Silva, 2017. "A hybrid approach combining interior-point and branch-and-bound methods applied to the problem of sugar cane waste," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(2), pages 147-164, February.
    8. Higgins, Andrew & Thorburn, Peter & Archer, Ainsley & Jakku, Emma, 2007. "Opportunities for value chain research in sugar industries," Agricultural Systems, Elsevier, vol. 94(3), pages 611-621, June.
    9. Kusumastuti, Ratih Dyah & Donk, Dirk Pieter van & Teunter, Ruud, 2016. "Crop-related harvesting and processing planning: a review," International Journal of Production Economics, Elsevier, vol. 174(C), pages 76-92.
    10. Junqueira, Rogerio de Ávila Ribeiro & Morabito, Reinaldo, 2019. "Modeling and solving a sugarcane harvest front scheduling problem," International Journal of Production Economics, Elsevier, vol. 213(C), pages 150-160.
    11. Lodree Jr., Emmett J. & Uzochukwu, Benedict M., 2008. "Production planning for a deteriorating item with stochastic demand and consumer choice," International Journal of Production Economics, Elsevier, vol. 116(2), pages 219-232, December.
    12. Kamal Lamsal & Philip C. Jones & Barrett W. Thomas, 2016. "Continuous time scheduling for sugarcane harvest logistics in Louisiana," International Journal of Production Research, Taylor & Francis Journals, vol. 54(2), pages 616-627, January.
    13. Vera Sadovska & Lena Ekelund Axelson & Cecilia Mark-Herbert, 2020. "Reviewing Value Creation in Agriculture—A Conceptual Analysis and a New Framework," Sustainability, MDPI, vol. 12(12), pages 1-22, June.
    14. Sadovska, V., 2018. "Sustainable value creation in the agricultural sector. A literature review," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 276984, International Association of Agricultural Economists.
    15. Esteban López-Milán & Lluis Plà-Aragonés, 2014. "A decision support system to manage the supply chain of sugar cane," Annals of Operations Research, Springer, vol. 219(1), pages 285-297, August.
    16. Sara Rodríguez & Lluis Plà & Javier Faulin, 2014. "New opportunities in operations research to improve pork supply chain efficiency," Annals of Operations Research, Springer, vol. 219(1), pages 5-23, August.
    17. Ahumada, Omar & Villalobos, J. Rene, 2009. "Application of planning models in the agri-food supply chain: A review," European Journal of Operational Research, Elsevier, vol. 196(1), pages 1-20, July.
    18. Ferrer, Juan-Carlos & Mac Cawley, Alejandro & Maturana, Sergio & Toloza, Sergio & Vera, Jorge, 2008. "An optimization approach for scheduling wine grape harvest operations," International Journal of Production Economics, Elsevier, vol. 112(2), pages 985-999, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Higgins, Andrew & Antony, George & Sandell, Gary & Davies, Ian & Prestwidge, Di & Andrew, Bill, 2004. "A framework for integrating a complex harvesting and transport system for sugar production," Agricultural Systems, Elsevier, vol. 82(2), pages 99-115, November.
    2. Yogesh K. Agarwal, 2002. "Design of Capacitated Multicommodity Networks with Multiple Facilities," Operations Research, INFORMS, vol. 50(2), pages 333-344, April.
    3. Alejandra Casado & Sergio Pérez-Peló & Jesús Sánchez-Oro & Abraham Duarte, 2022. "A GRASP algorithm with Tabu Search improvement for solving the maximum intersection of k-subsets problem," Journal of Heuristics, Springer, vol. 28(1), pages 121-146, February.
    4. Drexl, Andreas & Salewski, Frank, 1996. "Distribution Requirements and Compactness Constraints in School Timetabling. Part II: Methods," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 384, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    5. Böttcher, Jan & Drexl, Andreas & Kolisch, Rainer & Salewski, Frank, 1996. "Project scheduling under partially renewable resource constraints," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 398, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    6. Sacramento Quintanilla & Francisco Ballestín & Ángeles Pérez, 2020. "Mathematical models to improve the current practice in a Home Healthcare Unit," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(1), pages 43-74, March.
    7. Ahumada, Omar & Villalobos, J. Rene, 2009. "Application of planning models in the agri-food supply chain: A review," European Journal of Operational Research, Elsevier, vol. 196(1), pages 1-20, July.
    8. Raúl Martín-Santamaría & Ana D. López-Sánchez & María Luisa Delgado-Jalón & J. Manuel Colmenar, 2021. "An Efficient Algorithm for Crowd Logistics Optimization," Mathematics, MDPI, vol. 9(5), pages 1-19, March.
    9. Salewski, Frank & Bartsch, Thomas, 1994. "A comparison of genetic and greedy randomized algorithms for medium-to-short-term audit-staff scheduling," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 356, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    10. Sánchez-Oro, J. & López-Sánchez, A.D. & Hernández-Díaz, A.G. & Duarte, A., 2022. "GRASP with strategic oscillation for the α-neighbor p-center problem," European Journal of Operational Research, Elsevier, vol. 303(1), pages 143-158.
    11. Kusumastuti, Ratih Dyah & Donk, Dirk Pieter van & Teunter, Ruud, 2016. "Crop-related harvesting and processing planning: a review," International Journal of Production Economics, Elsevier, vol. 174(C), pages 76-92.
    12. Panos M. Pardalos & Tianbing Qian & Mauricio G.C. Resende, 1998. "A Greedy Randomized Adaptive Search Procedure for the Feedback Vertex Set Problem," Journal of Combinatorial Optimization, Springer, vol. 2(4), pages 399-412, December.
    13. Esteban López-Milán & Lluis Plà-Aragonés, 2014. "A decision support system to manage the supply chain of sugar cane," Annals of Operations Research, Springer, vol. 219(1), pages 285-297, August.
    14. A. D. López-Sánchez & J. Sánchez-Oro & M. Laguna, 2021. "A New Scatter Search Design for Multiobjective Combinatorial Optimization with an Application to Facility Location," INFORMS Journal on Computing, INFORMS, vol. 33(2), pages 629-642, May.
    15. El-Ghazali Talbi, 2016. "Combining metaheuristics with mathematical programming, constraint programming and machine learning," Annals of Operations Research, Springer, vol. 240(1), pages 171-215, May.
    16. Charles Fleurent & Fred Glover, 1999. "Improved Constructive Multistart Strategies for the Quadratic Assignment Problem Using Adaptive Memory," INFORMS Journal on Computing, INFORMS, vol. 11(2), pages 198-204, May.
    17. Schirmer, Andreas & Riesenberg, Sven, 1997. "Parameterized heuristics for project scheduling: Biased random sampling methods," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 456, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    18. Junqueira, Rogerio de Ávila Ribeiro & Morabito, Reinaldo, 2019. "Modeling and solving a sugarcane harvest front scheduling problem," International Journal of Production Economics, Elsevier, vol. 213(C), pages 150-160.
    19. Higgins, Andrew, 2006. "Scheduling of road vehicles in sugarcane transport: A case study at an Australian sugar mill," European Journal of Operational Research, Elsevier, vol. 170(3), pages 987-1000, May.
    20. Serigne Gueye & Philippe Michelon, 2005. "“Miniaturized” Linearizations for Quadratic 0/1 Problems," Annals of Operations Research, Springer, vol. 140(1), pages 235-261, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:57:y:2006:i:4:d:10.1057_palgrave.jors.2602024. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.