IDEAS home Printed from https://ideas.repec.org/a/nea/journl/y2018i39p33-54.html
   My bibliography  Save this article

External and Internal Determinants on the Electricity Market: A Multi-Scale Adaptive Causal Analysis

Author

Listed:
  • Afanasyev, D.

    (Joint-Stock Company "Greenatom", Moscow, Russia)

  • Fedorova, E.

    (Financial Management Department, Financial University under the Government of the Russian Federation, Moscow, Russia
    Finance Department of the National Research University - Higher School of Economics, Moscow, Russia)

Abstract

The goal of this study is to identify the causal relationships between the electricity price, its demand and the coal price on different time-scales for three markets: the zone Europe-Ural (EU) and Siberia (SI) of the Russian market ATS, and the English market - APX Power UK. The used methodology - multi-scale adaptive causal analysis - includes empirical mode decomposition and Granger causality test. This allows the drilling from the research on the source data level to a more detailed level of the time-series components. Our results show that such well-known stylized facts, as the impact of demand weekly seasonality to the electricity price and co-directional long-term movement of electricity prices and the primary fuels prices is confirmed for ATS EU and APX markets, while for ATS SI we did not find sufficient evidence of these. In practical terms, this suggests the need to take into account various factors for the construction of electricity price models for forecasting and risk management in these markets.

Suggested Citation

  • Afanasyev, D. & Fedorova, E., 2018. "External and Internal Determinants on the Electricity Market: A Multi-Scale Adaptive Causal Analysis," Journal of the New Economic Association, New Economic Association, vol. 39(3), pages 33-54.
  • Handle: RePEc:nea:journl:y:2018:i:39:p:33-54
    as

    Download full text from publisher

    File URL: http://www.econorus.org/repec/journl/2018-39-33-54.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Egil Ferkingstad & Anders L{o}land & Mathilde Wilhelmsen, 2011. "Causal modeling and inference for electricity markets," Papers 1110.5429, arXiv.org.
    2. de Menezes, Lilian M. & Houllier, Melanie A. & Tamvakis, Michael, 2016. "Time-varying convergence in European electricity spot markets and their association with carbon and fuel prices," Energy Policy, Elsevier, vol. 88(C), pages 613-627.
    3. Haldrup, Niels & Nielsen, Frank S. & Nielsen, Morten Ørregaard, 2010. "A vector autoregressive model for electricity prices subject to long memory and regime switching," Energy Economics, Elsevier, vol. 32(5), pages 1044-1058, September.
    4. Pirrong, Craig & Jermakyan, Martin, 2008. "The price of power: The valuation of power and weather derivatives," Journal of Banking & Finance, Elsevier, vol. 32(12), pages 2520-2529, December.
    5. Ferkingstad, Egil & Løland, Anders & Wilhelmsen, Mathilde, 2011. "Causal modeling and inference for electricity markets," Energy Economics, Elsevier, vol. 33(3), pages 404-412, May.
    6. repec:clg:wpaper:2008-21 is not listed on IDEAS
    7. Füss, Roland & Mahringer, Steffen & Prokopczuk, Marcel, 2015. "Electricity derivatives pricing with forward-looking information," Journal of Economic Dynamics and Control, Elsevier, vol. 58(C), pages 34-57.
    8. Afanasyev, Dmitriy O. & Fedorova, Elena A. & Popov, Viktor U., 2015. "Fine structure of the price–demand relationship in the electricity market: Multi-scale correlation analysis," Energy Economics, Elsevier, vol. 51(C), pages 215-226.
    9. Alvarez-Ramirez, Jose & Escarela-Perez, Rafael, 2010. "Time-dependent correlations in electricity markets," Energy Economics, Elsevier, vol. 32(2), pages 269-277, March.
    10. Yu, Lean & Li, Jingjing & Tang, Ling & Wang, Shuai, 2015. "Linear and nonlinear Granger causality investigation between carbon market and crude oil market: A multi-scale approach," Energy Economics, Elsevier, vol. 51(C), pages 300-311.
    11. Afanasyev, Dmitriy O. & Fedorova, Elena A., 2016. "The long-term trends on the electricity markets: Comparison of empirical mode and wavelet decompositions," Energy Economics, Elsevier, vol. 56(C), pages 432-442.
    12. Moutinho, Victor & Vieira, Joel & Carrizo Moreira, António, 2011. "The crucial relationship among energy commodity prices: Evidence from the Spanish electricity market," Energy Policy, Elsevier, vol. 39(10), pages 5898-5908, October.
    13. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    14. Rafal Weron, 2006. "Modeling and Forecasting Electricity Loads and Prices: A Statistical Approach," HSC Books, Hugo Steinhaus Center, Wroclaw University of Technology, number hsbook0601.
    15. Uritskaya, Olga Y. & Serletis, Apostolos, 2008. "Quantifying multiscale inefficiency in electricity markets," Energy Economics, Elsevier, vol. 30(6), pages 3109-3117, November.
    16. Zachmann, Georg, 2013. "A stochastic fuel switching model for electricity prices," Energy Economics, Elsevier, vol. 35(C), pages 5-13.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dmitriy O. Afanasyev & Elena A. Fedorova & Evgeniy V. Gilenko, 2021. "The fundamental drivers of electricity price: a multi-scale adaptive regression analysis," Empirical Economics, Springer, vol. 60(4), pages 1913-1938, April.
    2. Afanasyev, Dmitriy O. & Fedorova, Elena A. & Popov, Viktor U., 2015. "Fine structure of the price–demand relationship in the electricity market: Multi-scale correlation analysis," Energy Economics, Elsevier, vol. 51(C), pages 215-226.
    3. Yasir Alsaedi & Gurudeo Anand Tularam & Victor Wong, 2020. "Impact of Solar and Wind Prices on the Integrated Global Electricity Spot and Options Markets: A Time Series Analysis," International Journal of Energy Economics and Policy, Econjournals, vol. 10(2), pages 337-353.
    4. João Pedro Pereira & Vasco Pesquita & Paulo M. M. Rodrigues & António Rua, 2019. "Market integration and the persistence of electricity prices," Empirical Economics, Springer, vol. 57(5), pages 1495-1514, November.
    5. Vassilis Stavrakas & Nikos Kleanthis & Alexandros Flamos, 2020. "An Ex-Post Assessment of RES-E Support in Greece by Investigating the Monetary Flows and the Causal Relationships in the Electricity Market," Energies, MDPI, vol. 13(17), pages 1-29, September.
    6. Abdurrahman Nazif ÇATIK, 2020. "A Time-varying VAR Investigation of the Relationship among Electricity, Fossil Fuel Prices and Exchange Rate in Turkey," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(3), pages 60-77, September.
    7. Freitas, Carlos J. Pereira & Silva, Patrícia Pereira da, 2015. "European Union emissions trading scheme impact on the Spanish electricity price during phase II and phase III implementation," Utilities Policy, Elsevier, vol. 33(C), pages 54-62.
    8. A Ciarreta and A Zarraga, 2015. "Analysis of mean and volatility price transmissions in the MIBEL and EPEX electricity spot markets," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    9. Lei Jiang & Ling Bai, 2017. "Revisiting the Granger Causality Relationship between Energy Consumption and Economic Growth in China: A Multi-Timescale Decomposition Approach," Sustainability, MDPI, vol. 9(12), pages 1-17, December.
    10. Ciarreta Antuñano, Aitor & Zárraga Alonso, Ainhoa, 2012. "Analysis of volatility transmissions in integrated and interconnected markets: The case of the Iberian and French markets," BILTOKI 1134-8984, Universidad del País Vasco - Departamento de Economía Aplicada III (Econometría y Estadística).
    11. Olga Y. Uritskaya & Vadim M. Uritsky, 2015. "Predictability of price movements in deregulated electricity markets," Papers 1505.08117, arXiv.org.
    12. de Menezes, Lilian M. & Houllier, Melanie A. & Tamvakis, Michael, 2016. "Time-varying convergence in European electricity spot markets and their association with carbon and fuel prices," Energy Policy, Elsevier, vol. 88(C), pages 613-627.
    13. Yasir Alsaedi & Gurudeo Anand Tularam & Victor Wong, 2020. "Assessing the Effects of Solar and Wind Prices on the Australia Electricity Spot and Options Markets Using a Vector Autoregression Analysis," International Journal of Energy Economics and Policy, Econjournals, vol. 10(1), pages 120-133.
    14. Xia, Tongshui & Ji, Qiang & Geng, Jiang-Bo, 2020. "Nonlinear dependence and information spillover between electricity and fuel source markets: New evidence from a multi-scale analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    15. Nakajima, Tadahiro, 2013. "Inefficient and opaque price formation in the Japan Electric Power Exchange," Energy Policy, Elsevier, vol. 55(C), pages 329-334.
    16. Florian Ziel & Rick Steinert & Sven Husmann, 2015. "Forecasting day ahead electricity spot prices: The impact of the EXAA to other European electricity markets," Papers 1501.00818, arXiv.org, revised Dec 2015.
    17. Nowotarski, Jakub & Tomczyk, Jakub & Weron, Rafał, 2013. "Robust estimation and forecasting of the long-term seasonal component of electricity spot prices," Energy Economics, Elsevier, vol. 39(C), pages 13-27.
    18. Li, Xin & Li, Zheng & Su, Chi-Wei & Umar, Muhammad & Shao, Xuefeng, 2022. "Exploring the asymmetric impact of economic policy uncertainty on China's carbon emissions trading market price: Do different types of uncertainty matter?," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
    19. Wang, Lu & Ma, Feng & Niu, Tianjiao & Liang, Chao, 2021. "The importance of extreme shock: Examining the effect of investor sentiment on the crude oil futures market," Energy Economics, Elsevier, vol. 99(C).
    20. Algieri, Bernardina & Leccadito, Arturo & Tunaru, Diana, 2021. "Risk premia in electricity derivatives markets," Energy Economics, Elsevier, vol. 100(C).

    More about this item

    Keywords

    electricity price; pricing mechanism; Granger causality; empirical mode decomposition;
    All these keywords.

    JEL classification:

    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nea:journl:y:2018:i:39:p:33-54. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alexey Tcharykov (email available below). General contact details of provider: https://edirc.repec.org/data/nearuea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.