IDEAS home Printed from https://ideas.repec.org/a/nbp/nbpbik/v42y2011i1p49-78.html
   My bibliography  Save this article

Practical and theoretical aspects of market-consistent valuation and hedging of insurance liabilities

Author

Listed:
  • Łukasz Delong

    (Warsaw School of Economics)

Abstract

In this paper we deal with market-consistent valuation and hedging of insurance cash flows. We start with recalling traditional actuarial and financial pricing principles and we show how to integrate them into one arbitrage-free principle which leads to market-consistent valuation of the cash flows. Integrated actuarial and financial valuation is justified by referring to Solvency II Directive and discussing its key points related to market-consistent valuation. As an arbitrage-free pricing principle requires specification of an equivalent martingale measure, we characterize all equivalent martingale measures in a very general combined insurance and financial model. This full characterization allows us to price all claims contingent on the financial and insurance risks. We also deal with static and dynamic hedging of insurance liabilities in our general model. We derive an investment portfolio consisting of a bond, a stock and a mortality bond which can be used by a life insurance company to hedge its payment process contingent on the financial and insurance risk. The goal is to unify practical and theoretical aspects of market-consistent valuation and hedging and to state general results relevant to insurance applications.

Suggested Citation

  • Łukasz Delong, 2011. "Practical and theoretical aspects of market-consistent valuation and hedging of insurance liabilities," Bank i Kredyt, Narodowy Bank Polski, vol. 42(1), pages 49-78.
  • Handle: RePEc:nbp:nbpbik:v:42:y:2011:i:1:p:49-78
    Note: This research is supported by the Foundation for Polish Science. The author would like to thank two anonymous referees for their useful remarks that improved the earlier version of this paper.
    as

    Download full text from publisher

    File URL: https://bankikredyt.nbp.pl/content/2011/01/bik_01_2011_03_art.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Blanchet-Scalliet, Christophette & El Karoui, Nicole & Martellini, Lionel, 2005. "Dynamic asset pricing theory with uncertain time-horizon," Journal of Economic Dynamics and Control, Elsevier, vol. 29(10), pages 1737-1764, October.
    2. Møller,Thomas & Steffensen,Mogens, 2007. "Market-Valuation Methods in Life and Pension Insurance," Cambridge Books, Cambridge University Press, number 9780521868778.
    3. Christophette Blanchet-Scalliet & Monique Jeanblanc, 2004. "Hazard rate for credit risk and hedging defaultable contingent claims," Finance and Stochastics, Springer, vol. 8(1), pages 145-159, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Florian Gach & Simon Hochgerner & Eva Kienbacher & Gabriel Schachinger, 2023. "Mean-field Libor market model and valuation of long term guarantees," Papers 2310.09022, arXiv.org, revised Nov 2023.
    2. Dhaene, Jan & Stassen, Ben & Barigou, Karim & Linders, Daniël & Chen, Ze, 2017. "Fair valuation of insurance liabilities: Merging actuarial judgement and market-consistency," Insurance: Mathematics and Economics, Elsevier, vol. 76(C), pages 14-27.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kamil Kladivko & Mihail Zervos, 2017. "Valuation of Employee Stock Options (ESOs) by means of Mean-Variance Hedging," Papers 1710.00897, arXiv.org.
    2. Tahir Choulli & Sina Yansori, 2018. "Explicit description of all deflators for market models under random horizon with applications to NFLVR," Papers 1803.10128, arXiv.org, revised Feb 2021.
    3. Dirk Becherer & Martin Schweizer, 2005. "Classical solutions to reaction-diffusion systems for hedging problems with interacting Ito and point processes," Papers math/0505208, arXiv.org.
    4. Blanchet-Scalliet, Christophette & El Karoui, Nicole & Martellini, Lionel, 2005. "Dynamic asset pricing theory with uncertain time-horizon," Journal of Economic Dynamics and Control, Elsevier, vol. 29(10), pages 1737-1764, October.
    5. Christiansen, Marcus C. & Djehiche, Boualem, 2020. "Nonlinear reserving and multiple contract modifications in life insurance," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 187-195.
    6. Marco Di Francesco & Roberta Simonella, 2023. "A stochastic Asset Liability Management model for life insurance companies," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 37(1), pages 61-94, March.
    7. Ludkovski, Michael & Young, Virginia R., 2008. "Indifference pricing of pure endowments and life annuities under stochastic hazard and interest rates," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 14-30, February.
    8. Kristian Buchardt & Thomas Møller, 2018. "Hedging and Cash Flows in the Presence of Taxes and Expenses in Life and Pension Insurance," Risks, MDPI, vol. 6(3), pages 1-25, July.
    9. Tomoaki Shouda, 2005. "Dynamical analysis of corporate bonds based on the yield spread term-quality surface," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 12(4), pages 307-332, December.
    10. Tahir Choulli & Sina Yansori, 2018. "Log-optimal portfolio and num\'eraire portfolio for market models stopped at a random time," Papers 1810.12762, arXiv.org, revised Aug 2020.
    11. Delia Coculescu & Ashkan Nikeghbali, 2008. "Hazard processes and martingale hazard processes," Papers 0807.4958, arXiv.org.
    12. Marcel Philipp Müller & Sebastian Stöckl & Steffen Zimmermann & Bernd Heinrich, 2016. "Decision Support for IT Investment Projects," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 58(6), pages 381-396, December.
    13. Campi, Luciano & Polbennikov, Simon & Sbuelz, Alessandro, 2009. "Systematic equity-based credit risk: A CEV model with jump to default," Journal of Economic Dynamics and Control, Elsevier, vol. 33(1), pages 93-108, January.
    14. Bayraktar, Erhan & Milevsky, Moshe A. & David Promislow, S. & Young, Virginia R., 2009. "Valuation of mortality risk via the instantaneous Sharpe ratio: Applications to life annuities," Journal of Economic Dynamics and Control, Elsevier, vol. 33(3), pages 676-691, March.
    15. Huang, Dashan & Zhu, Shu-Shang & Fabozzi, Frank J. & Fukushima, Masao, 2008. "Portfolio selection with uncertain exit time: A robust CVaR approach," Journal of Economic Dynamics and Control, Elsevier, vol. 32(2), pages 594-623, February.
    16. Christophette Blanchet-Scalliet & Anne Eyraud-Loisel & Manuela Royer-Carenzi, 2010. "Hedging of Defaultable Contingent Claims using BSDE with uncertain time horizon," Post-Print hal-01107525, HAL.
    17. Ragnar Norberg, 2013. "Optimal hedging of demographic risk in life insurance," Finance and Stochastics, Springer, vol. 17(1), pages 197-222, January.
    18. Tahir Choulli & Catherine Daveloose & Michèle Vanmaele, 2021. "Mortality/Longevity Risk-Minimization with or without Securitization," Mathematics, MDPI, vol. 9(14), pages 1-27, July.
    19. Philippe Ehlers & Philipp Schönbucher, 2009. "Background filtrations and canonical loss processes for top-down models of portfolio credit risk," Finance and Stochastics, Springer, vol. 13(1), pages 79-103, January.
    20. Magdalena Homa, 2022. "The Impact of MT Strategies on Risk and Value Distribution of Unit-linked Insurance Portfolio," European Research Studies Journal, European Research Studies Journal, vol. 0(3), pages 607-619.

    More about this item

    Keywords

    Integrated actuarial and financial valuation; equivalent martingale measure; martingale representation theorem; static and dynamic hedging; mortality bond; Solvency II;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbp:nbpbik:v:42:y:2011:i:1:p:49-78. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wojciech Burjanek (email available below). General contact details of provider: https://edirc.repec.org/data/nbpgvpl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.