IDEAS home Printed from https://ideas.repec.org/a/nat/nathum/v4y2020i6d10.1038_s41562-020-0898-6.html
   My bibliography  Save this article

Social network-based distancing strategies to flatten the COVID-19 curve in a post-lockdown world

Author

Listed:
  • Per Block

    (University of Oxford)

  • Marion Hoffman

    (ETH Zurich)

  • Isabel J. Raabe

    (University of Zurich)

  • Jennifer Beam Dowd

    (University of Oxford)

  • Charles Rahal

    (University of Oxford
    University of Oxford)

  • Ridhi Kashyap

    (University of Oxford
    University of Oxford
    University of Oxford)

  • Melinda C. Mills

    (University of Oxford
    University of Oxford)

Abstract

Social distancing and isolation have been widely introduced to counter the COVID-19 pandemic. Adverse social, psychological and economic consequences of a complete or near-complete lockdown demand the development of more moderate contact-reduction policies. Adopting a social network approach, we evaluate the effectiveness of three distancing strategies designed to keep the curve flat and aid compliance in a post-lockdown world. These are: limiting interaction to a few repeated contacts akin to forming social bubbles; seeking similarity across contacts; and strengthening communities via triadic strategies. We simulate stochastic infection curves incorporating core elements from infection models, ideal-type social network models and statistical relational event models. We demonstrate that a strategic social network-based reduction of contact strongly enhances the effectiveness of social distancing measures while keeping risks lower. We provide scientific evidence for effective social distancing that can be applied in public health messaging and that can mitigate negative consequences of social isolation.

Suggested Citation

  • Per Block & Marion Hoffman & Isabel J. Raabe & Jennifer Beam Dowd & Charles Rahal & Ridhi Kashyap & Melinda C. Mills, 2020. "Social network-based distancing strategies to flatten the COVID-19 curve in a post-lockdown world," Nature Human Behaviour, Nature, vol. 4(6), pages 588-596, June.
  • Handle: RePEc:nat:nathum:v:4:y:2020:i:6:d:10.1038_s41562-020-0898-6
    DOI: 10.1038/s41562-020-0898-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41562-020-0898-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41562-020-0898-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Block, Per & Grund, Thomas, 2014. "Multidimensional homophily in friendship networks," Network Science, Cambridge University Press, vol. 2(2), pages 189-212, August.
    2. Steven Goodreau & James Kitts & Martina Morris, 2009. "Birds of a feather, or friend of a friend? using exponential random graph models to investigate adolescent social networks," Demography, Springer;Population Association of America (PAA), vol. 46(1), pages 103-125, February.
    3. Neil M. Ferguson & Derek A. T. Cummings & Christophe Fraser & James C. Cajka & Philip C. Cooley & Donald S. Burke, 2006. "Strategies for mitigating an influenza pandemic," Nature, Nature, vol. 442(7101), pages 448-452, July.
    4. Duncan J. Watts & Steven H. Strogatz, 1998. "Collective dynamics of ‘small-world’ networks," Nature, Nature, vol. 393(6684), pages 440-442, June.
    5. Lynne Hamill & Nigel Gilbert, 2009. "Social Circles: A Simple Structure for Agent-Based Social Network Models," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 12(2), pages 1-3.
    6. Lorenzo Pellis & Simon Cauchemez & Neil M. Ferguson & Christophe Fraser, 2020. "Systematic selection between age and household structure for models aimed at emerging epidemic predictions," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martin, Darius D. & Wright, Adam C. & Krieg, John M., 2020. "Social networks and college performance: Evidence from dining data," Economics of Education Review, Elsevier, vol. 79(C).
    2. Nicola Campigotto & Chiara Rapallini & Aldo Rustichini, 2022. "School friendship networks, homophily and multiculturalism: evidence from European countries," Journal of Population Economics, Springer;European Society for Population Economics, vol. 35(4), pages 1687-1722, October.
    3. Hend Alrasheed & Alhanoof Althnian & Heba Kurdi & Heila Al-Mgren & Sulaiman Alharbi, 2020. "COVID-19 Spread in Saudi Arabia: Modeling, Simulation and Analysis," IJERPH, MDPI, vol. 17(21), pages 1-24, October.
    4. Samrachana Adhikari & Beau Dabbs, 2018. "Social Network Analysis in R: A Software Review," Journal of Educational and Behavioral Statistics, , vol. 43(2), pages 225-253, April.
    5. Wang, Xiaojie & Slamu, Wushour & Guo, Wenqiang & Wang, Sixiu & Ren, Yan, 2022. "A novel semi local measure of identifying influential nodes in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    6. Catalina Amuedo-Dorantes & Neeraj Kaushal & Ashley N. Muchow, 2021. "Timing of social distancing policies and COVID-19 mortality: county-level evidence from the U.S," Journal of Population Economics, Springer;European Society for Population Economics, vol. 34(4), pages 1445-1472, October.
    7. Lin, Dan & Wu, Jiajing & Xuan, Qi & Tse, Chi K., 2022. "Ethereum transaction tracking: Inferring evolution of transaction networks via link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    8. Ferreira, D.S.R. & Ribeiro, J. & Oliveira, P.S.L. & Pimenta, A.R. & Freitas, R.P. & Dutra, R.S. & Papa, A.R.R. & Mendes, J.F.F., 2022. "Spatiotemporal analysis of earthquake occurrence in synthetic and worldwide data," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    9. Susan M. Rogers & James Rineer & Matthew D. Scruggs & William D. Wheaton & Phillip C. Cooley & Douglas J. Roberts & Diane K. Wagener, 2014. "A Geospatial Dynamic Microsimulation Model for Household Population Projections," International Journal of Microsimulation, International Microsimulation Association, vol. 7(2), pages 119-146.
    10. Qinghu Liao & Wenwen Dong & Boxin Zhao, 2023. "A New Strategy to Solve “the Tragedy of the Commons” in Sustainable Grassland Ecological Compensation: Experience from Inner Mongolia, China," Sustainability, MDPI, vol. 15(12), pages 1-24, June.
    11. Jianhong Chen & Hongcai Ma & Shan Yang, 2023. "SEIOR Rumor Propagation Model Considering Hesitating Mechanism and Different Rumor-Refuting Ways in Complex Networks," Mathematics, MDPI, vol. 11(2), pages 1-22, January.
    12. Gregory Gutin & Tomohiro Hirano & Sung-Ha Hwang & Philip R. Neary & Alexis Akira Toda, 2021. "The effect of social distancing on the reach of an epidemic in social networks," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 16(3), pages 629-647, July.
    13. Duxbury, Scott W, 2017. "Diagnosing Multicollinearity in Exponential Random Graph Models," OSF Preprints hz93j, Center for Open Science.
    14. Jie, Ke-Wei & Liu, San-Yang & Sun, Xiao-Jun & Xu, Yun-Cheng, 2023. "A dynamic ripple-spreading algorithm for solving mean–variance of shortest path model in uncertain random networks," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    15. Tom A. B. Snijders & Christian E. G. Steglich, 2015. "Representing Micro–Macro Linkages by Actor-based Dynamic Network Models," Sociological Methods & Research, , vol. 44(2), pages 222-271, May.
    16. Divakaruni, Anantha & Zimmerman, Peter, 2023. "The Lightning Network: Turning Bitcoin into money," Finance Research Letters, Elsevier, vol. 52(C).
    17. Leto Peel & Tiago P. Peixoto & Manlio De Domenico, 2022. "Statistical inference links data and theory in network science," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    18. Victor W. Chu & Raymond K. Wong & Chi-Hung Chi & Wei Zhou & Ivan Ho, 2017. "The design of a cloud-based tracker platform based on system-of-systems service architecture," Information Systems Frontiers, Springer, vol. 19(6), pages 1283-1299, December.
    19. Bale, Catherine S.E. & McCullen, Nicholas J. & Foxon, Timothy J. & Rucklidge, Alastair M. & Gale, William F., 2013. "Harnessing social networks for promoting adoption of energy technologies in the domestic sector," Energy Policy, Elsevier, vol. 63(C), pages 833-844.
    20. Khan, Hasib & Ibrahim, Muhammad & Abdel-Aty, Abdel-Haleem & Khashan, M. Motawi & Khan, Farhat Ali & Khan, Aziz, 2021. "A fractional order Covid-19 epidemic model with Mittag-Leffler kernel," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nathum:v:4:y:2020:i:6:d:10.1038_s41562-020-0898-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.