IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-023-44483-6.html
   My bibliography  Save this article

Tensile straining of iridium sites in manganese oxides for proton-exchange membrane water electrolysers

Author

Listed:
  • Hui Su

    (College of Chemistry and Chemical Engineering, Hunan Normal University)

  • Chenyu Yang

    (University of Science and Technology of China)

  • Meihuan Liu

    (Central South University)

  • Xu Zhang

    (Faculty of Materials and Manufacturing, Beijing University of Technology)

  • Wanlin Zhou

    (University of Science and Technology of China)

  • Yuhao Zhang

    (University of Science and Technology of China)

  • Kun Zheng

    (Faculty of Materials and Manufacturing, Beijing University of Technology)

  • Shixun Lian

    (College of Chemistry and Chemical Engineering, Hunan Normal University)

  • Qinghua Liu

    (University of Science and Technology of China)

Abstract

Although the acidic oxygen evolution reaction (OER) plays a crucial role in proton-exchange membrane water electrolysis (PEMWE) devices, challenges remain owing to the lack of efficient and acid-stable electrocatalysts. Herein, we present a low-iridium electrocatalyst in which tensile-strained iridium atoms are localized at manganese-oxide surface cation sites (TS-Ir/MnO2) for high and sustainable OER activity. In situ synchrotron characterizations reveal that the TS-Ir/MnO2 can trigger a continuous localized lattice oxygen-mediated (L-LOM) mechanism. In particular, the L-LOM process could substantially boost the adsorption and transformation of H2O molecules over the oxygen vacancies around the tensile-strained Ir sites and prevent further loss of lattice oxygen atoms in the inner MnO2 bulk to optimize the structural integrity of the catalyst. Importantly, the resultant PEMWE device fabricated using TS-Ir/MnO2 delivers a current density of 500 mA cm−2 and operates stably for 200 h.

Suggested Citation

  • Hui Su & Chenyu Yang & Meihuan Liu & Xu Zhang & Wanlin Zhou & Yuhao Zhang & Kun Zheng & Shixun Lian & Qinghua Liu, 2024. "Tensile straining of iridium sites in manganese oxides for proton-exchange membrane water electrolysers," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44483-6
    DOI: 10.1038/s41467-023-44483-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-44483-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-44483-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hui Su & Wanlin Zhou & Wu Zhou & Yuanli Li & Lirong Zheng & Hui Zhang & Meihuan Liu & Xiuxiu Zhang & Xuan Sun & Yanzhi Xu & Fengchun Hu & Jing Zhang & Tiandou Hu & Qinghua Liu & Shiqiang Wei, 2021. "In-situ spectroscopic observation of dynamic-coupling oxygen on atomically dispersed iridium electrocatalyst for acidic water oxidation," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    2. Steven Chu & Arun Majumdar, 2012. "Opportunities and challenges for a sustainable energy future," Nature, Nature, vol. 488(7411), pages 294-303, August.
    3. Rui Li & Haiyun Wang & Fei Hu & K. C. Chan & Xiongjun Liu & Zhaoping Lu & Jing Wang & Zhibin Li & Longjiao Zeng & Yuanyuan Li & Xiaojun Wu & Yujie Xiong, 2021. "IrW nanochannel support enabling ultrastable electrocatalytic oxygen evolution at 2 A cm−2 in acidic media," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    4. Yubo Chen & Haiyan Li & Jingxian Wang & Yonghua Du & Shibo Xi & Yuanmiao Sun & Matthew Sherburne & Joel W. Ager & Adrian C. Fisher & Zhichuan J. Xu, 2019. "Exceptionally active iridium evolved from a pseudo-cubic perovskite for oxygen evolution in acid," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    5. Shunsuke Yagi & Ikuya Yamada & Hirofumi Tsukasaki & Akihiro Seno & Makoto Murakami & Hiroshi Fujii & Hungru Chen & Naoto Umezawa & Hideki Abe & Norimasa Nishiyama & Shigeo Mori, 2015. "Covalency-reinforced oxygen evolution reaction catalyst," Nature Communications, Nature, vol. 6(1), pages 1-6, November.
    6. Xiaopeng Wang & Shibo Xi & Pengru Huang & Yonghua Du & Haoyin Zhong & Qing Wang & Armando Borgna & Yong-Wei Zhang & Zhenbo Wang & Hao Wang & Zhi Gen Yu & Wee Siang Vincent Lee & Junmin Xue, 2022. "Pivotal role of reversible NiO6 geometric conversion in oxygen evolution," Nature, Nature, vol. 611(7937), pages 702-708, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhaoping Shi & Ji Li & Yibo Wang & Shiwei Liu & Jianbing Zhu & Jiahao Yang & Xian Wang & Jing Ni & Zheng Jiang & Lijuan Zhang & Ying Wang & Changpeng Liu & Wei Xing & Junjie Ge, 2023. "Customized reaction route for ruthenium oxide towards stabilized water oxidation in high-performance PEM electrolyzers," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Xinyu Ping & Yongduo Liu & Lixia Zheng & Yang Song & Lin Guo & Siguo Chen & Zidong Wei, 2024. "Locking the lattice oxygen in RuO2 to stabilize highly active Ru sites in acidic water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Zhirong Zhang & Chuanyi Jia & Peiyu Ma & Chen Feng & Jin Yang & Junming Huang & Jiana Zheng & Ming Zuo & Mingkai Liu & Shiming Zhou & Jie Zeng, 2024. "Distance effect of single atoms on stability of cobalt oxide catalysts for acidic oxygen evolution," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Dongpeng Zhang & Yanxiao Li & Pengfei Wang & Jinyong Qu & Yi Li & Sihui Zhan, 2023. "Dynamic active-site induced by host-guest interactions boost the Fenton-like reaction for organic wastewater treatment," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Chen, Xuejun & Yang, Yongming & Cui, Zhixin & Shen, Jun, 2019. "Vibration fault diagnosis of wind turbines based on variational mode decomposition and energy entropy," Energy, Elsevier, vol. 174(C), pages 1100-1109.
    6. Muhammad Habib Ur Rehman & Luigi Coppola & Ernestino Lufrano & Isabella Nicotera & Cataldo Simari, 2023. "Enhancing Water Retention, Transport, and Conductivity Performance in Fuel Cell Applications: Nafion-Based Nanocomposite Membranes with Organomodified Graphene Oxide Nanoplatelets," Energies, MDPI, vol. 16(23), pages 1-11, November.
    7. Pin Li & Jinsuo Zhang, 2019. "Is China’s Energy Supply Sustainable? New Research Model Based on the Exponential Smoothing and GM(1,1) Methods," Energies, MDPI, vol. 12(2), pages 1-30, January.
    8. Mao, Guozhu & Zou, Hongyang & Chen, Guanyi & Du, Huibin & Zuo, Jian, 2015. "Past, current and future of biomass energy research: A bibliometric analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1823-1833.
    9. Luo, Rongrong & Wang, Liuwei & Yu, Wei & Shao, Feilong & Shen, Haikuo & Xie, Huaqing, 2023. "High energy storage density titanium nitride-pentaerythritol solid–solid composite phase change materials for light-thermal-electric conversion," Applied Energy, Elsevier, vol. 331(C).
    10. Chen, Dongfang & Pan, Lyuming & Pei, Pucheng & Huang, Shangwei & Ren, Peng & Song, Xin, 2021. "Carbon-coated oxygen vacancies-rich Co3O4 nanoarrays grow on nickel foam as efficient bifunctional electrocatalysts for rechargeable zinc-air batteries," Energy, Elsevier, vol. 224(C).
    11. Géremi Gilson Dranka & Paula Ferreira, 2020. "Electric Vehicles and Biofuels Synergies in the Brazilian Energy System," Energies, MDPI, vol. 13(17), pages 1-22, August.
    12. Haoyin Zhong & Qi Zhang & Junchen Yu & Xin Zhang & Chao Wu & Hang An & Yifan Ma & Hao Wang & Jun Zhang & Yong-Wei Zhang & Caozheng Diao & Zhi Gen Yu & Shibo Xi & Xiaopeng Wang & Junmin Xue, 2023. "Key role of eg* band broadening in nickel-based oxyhydroxides on coupled oxygen evolution mechanism," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    13. Yang, Jingluan & Chen, Wei, 2023. "Unravelling the landscape of global cobalt trade: Patterns, robustness, and supply chain security," Resources Policy, Elsevier, vol. 86(PB).
    14. Neves, Renato Cruz & Klein, Bruno Colling & da Silva, Ricardo Justino & Rezende, Mylene Cristina Alves Ferreira & Funke, Axel & Olivarez-Gómez, Edgardo & Bonomi, Antonio & Maciel-Filho, Rubens, 2020. "A vision on biomass-to-liquids (BTL) thermochemical routes in integrated sugarcane biorefineries for biojet fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    15. Li, Jinpeng & Chen, Xiangjie & Li, Guiqiang, 2023. "Effect of separation wavelength on a novel solar-driven hybrid hydrogen production system (SDHPS) by solar full spectrum energy," Renewable Energy, Elsevier, vol. 215(C).
    16. Sicong Wang & Changhai Qin & Yong Zhao & Jing Zhao & Yuping Han, 2023. "The Evolutionary Path of the Center of Gravity for Water Use, the Population, and the Economy, and Their Decomposed Contributions in China from 1965 to 2019," Sustainability, MDPI, vol. 15(12), pages 1-20, June.
    17. Cheng, Qian & Liu, Pan & Xia, Qian & Cheng, Lei & Ming, Bo & Zhang, Wei & Xu, Weifeng & Zheng, Yalian & Han, Dongyang & Xia, Jun, 2023. "An analytical method to evaluate curtailment of hydro–photovoltaic hybrid energy systems and its implication under climate change," Energy, Elsevier, vol. 278(C).
    18. Feng Zhou & Chunhui Wen, 2023. "Research on the Level of Agricultural Green Development, Regional Disparities, and Dynamic Distribution Evolution in China from the Perspective of Sustainable Development," Agriculture, MDPI, vol. 13(7), pages 1-47, July.
    19. Zhang, Kaiqiang & Jia, Na & Liu, Lirong, 2019. "CO2 storage in fractured nanopores underground: Phase behaviour study," Applied Energy, Elsevier, vol. 238(C), pages 911-928.
    20. Chen, Xinhui & Wei, Jianfeng & Sheng, Songwei & Wang, Wensheng & Wang, Kunlin & Zhang, Yaqun & Wang, Zhenpeng, 2023. "Design and experimental study of a novel type water-filled submerged flexible bag wave energy converter," Renewable Energy, Elsevier, vol. 218(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44483-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.