IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42891-2.html
   My bibliography  Save this article

Aerosols overtake greenhouse gases causing a warmer climate and more weather extremes toward carbon neutrality

Author

Listed:
  • Pinya Wang

    (Nanjing University of Information Science and Technology)

  • Yang Yang

    (Nanjing University of Information Science and Technology)

  • Daokai Xue

    (Nanjing University)

  • Lili Ren

    (Jiangsu Open University)

  • Jianping Tang

    (Nanjing University)

  • L. Ruby Leung

    (Pacific Northwest National Laboratory)

  • Hong Liao

    (Nanjing University of Information Science and Technology)

Abstract

To mitigate climate warming, many countries have committed to achieve carbon neutrality in the mid-21st century. Here, we assess the global impacts of changing greenhouse gases (GHGs), aerosols, and tropospheric ozone (O3) following a carbon neutrality pathway on climate and extreme weather events individually using the Community Earth System Model version 1 (CESM1). The results suggest that the future aerosol reductions significantly contribute to climate warming and increase the frequency and intensity of extreme weathers toward carbon neutrality and aerosol impacts far outweigh those of GHGs and tropospheric O3. It reverses the knowledge that the changing GHGs dominate the future climate changes as predicted in the middle of the road pathway. Therefore, substantial reductions in GHGs and tropospheric O3 are necessary to reach the 1.5 °C warming target and mitigate the harmful effects of concomitant aerosol reductions on climate and extreme weather events under carbon neutrality in the future.

Suggested Citation

  • Pinya Wang & Yang Yang & Daokai Xue & Lili Ren & Jianping Tang & L. Ruby Leung & Hong Liao, 2023. "Aerosols overtake greenhouse gases causing a warmer climate and more weather extremes toward carbon neutrality," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42891-2
    DOI: 10.1038/s41467-023-42891-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42891-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42891-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hui Yang & Xinyuan Huang & Daniel M. Westervelt & Larry Horowitz & Wei Peng, 2023. "Socio-demographic factors shaping the future global health burden from air pollution," Nature Sustainability, Nature, vol. 6(1), pages 58-68, January.
    2. Yang Yang & Lili Ren & Mingxuan Wu & Hailong Wang & Fengfei Song & L. Ruby Leung & Xin Hao & Jiandong Li & Lei Chen & Huimin Li & Liangying Zeng & Yang Zhou & Pinya Wang & Hong Liao & Jing Wang & Zhen, 2022. "Abrupt emissions reductions during COVID-19 contributed to record summer rainfall in China," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    3. Andrew D. King & Todd P. Lane & Benjamin J. Henley & Josephine R. Brown, 2020. "Global and regional impacts differ between transient and equilibrium warmer worlds," Nature Climate Change, Nature, vol. 10(1), pages 42-47, January.
    4. Soong-Ki Kim & Jongsoo Shin & Soon-Il An & Hyo-Jeong Kim & Nari Im & Shang-Ping Xie & Jong-Seong Kug & Sang-Wook Yeh, 2022. "Widespread irreversible changes in surface temperature and precipitation in response to CO2 forcing," Nature Climate Change, Nature, vol. 12(9), pages 834-840, September.
    5. V. Kharin & F. Zwiers & X. Zhang & M. Wehner, 2013. "Changes in temperature and precipitation extremes in the CMIP5 ensemble," Climatic Change, Springer, vol. 119(2), pages 345-357, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Diana R. Gergel & Bart Nijssen & John T. Abatzoglou & Dennis P. Lettenmaier & Matt R. Stumbaugh, 2017. "Effects of climate change on snowpack and fire potential in the western USA," Climatic Change, Springer, vol. 141(2), pages 287-299, March.
    2. Guoyong Leng & Qiuhong Tang & Shengzhi Huang & Xuejun Zhang, 2016. "Extreme hot summers in China in the CMIP5 climate models," Climatic Change, Springer, vol. 135(3), pages 669-681, April.
    3. Jorge Castillo-Mateo & Jesús Asín & Ana C. Cebrián & Jesús Mateo-Lázaro & Jesús Abaurrea, 2023. "Bayesian Variable Selection in Generalized Extreme Value Regression: Modeling Annual Maximum Temperature," Mathematics, MDPI, vol. 11(3), pages 1-19, February.
    4. Luke J. Harrington & Kristie L. Ebi & David J. Frame & Friederike E. L. Otto, 2022. "Integrating attribution with adaptation for unprecedented future heatwaves," Climatic Change, Springer, vol. 172(1), pages 1-7, May.
    5. Gloria Buriticá & Philippe Naveau, 2023. "Stable sums to infer high return levels of multivariate rainfall time series," Environmetrics, John Wiley & Sons, Ltd., vol. 34(4), June.
    6. Conrad Wasko & Rory Nathan, 2019. "The local dependency of precipitation on historical changes in temperature," Climatic Change, Springer, vol. 156(1), pages 105-120, September.
    7. Mark D. Risser & William D. Collins & Michael F. Wehner & Travis A. O’Brien & Huanping Huang & Paul A. Ullrich, 2024. "Anthropogenic aerosols mask increases in US rainfall by greenhouse gases," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    8. Hong Ying & Hongyan Zhang & Ying Sun & Jianjun Zhao & Zhengxiang Zhang & Xiaoyi Guo & Hang Zhao & Rihan Wu & Guorong Deng, 2020. "CMIP5-Based Spatiotemporal Changes of Extreme Temperature Events during 2021–2100 in Mainland China," Sustainability, MDPI, vol. 12(11), pages 1-18, May.
    9. Ralph Trancoso & Jozef Syktus & Richard P. Allan & Jacky Croke & Ove Hoegh-Guldberg & Robin Chadwick, 2024. "Significantly wetter or drier future conditions for one to two thirds of the world’s population," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Claudia Tebaldi & Michael F. Wehner, 2018. "Benefits of mitigation for future heat extremes under RCP4.5 compared to RCP8.5," Climatic Change, Springer, vol. 146(3), pages 349-361, February.
    11. Ying Pan & Ke Shi & Zhongxu Zhao & Yao Li & Junxi Wu, 2024. "The effects of China’s poverty eradication program on sustainability and inequality," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-15, December.
    12. Luminda Niroshana Gunawardhana & Ghazi A. Al-Rawas & Ghadeer Al-Hadhrami, 2018. "Quantification of the changes in intensity and frequency of hourly extreme rainfall attributed climate change in Oman," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(3), pages 1649-1664, July.
    13. Victor Ongoma & Haishan Chen & Chujie Gao & Aston Matwai Nyongesa & Francis Polong, 2018. "Future changes in climate extremes over Equatorial East Africa based on CMIP5 multimodel ensemble," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(2), pages 901-920, January.
    14. Gareth J. Marshall & Kirsti Jylhä & Sonja Kivinen & Mikko Laapas & Anita Verpe Dyrrdal, 2020. "The role of atmospheric circulation patterns in driving recent changes in indices of extreme seasonal precipitation across Arctic Fennoscandia," Climatic Change, Springer, vol. 162(2), pages 741-759, September.
    15. Wenhui Liu & Jidong Wu & Rumei Tang & Mengqi Ye & Jing Yang, 2020. "Daily Precipitation Threshold for Rainstorm and Flood Disaster in the Mainland of China: An Economic Loss Perspective," Sustainability, MDPI, vol. 12(1), pages 1-14, January.
    16. Yangyang Xu & Jean-François Lamarque & Benjamin M. Sanderson, 2018. "The importance of aerosol scenarios in projections of future heat extremes," Climatic Change, Springer, vol. 146(3), pages 393-406, February.
    17. Peter A. Stott & David J. Karoly & Francis W. Zwiers, 2017. "Is the choice of statistical paradigm critical in extreme event attribution studies?," Climatic Change, Springer, vol. 144(2), pages 143-150, September.
    18. Yong Yuan & Denghua Yan & Zhe Yuan & Jun Yin & Zhongnan Zhao, 2019. "Spatial Distribution of Precipitation in Huang-Huai-Hai River Basin between 1961 to 2016, China," IJERPH, MDPI, vol. 16(18), pages 1-11, September.
    19. Jang Hyun Sung & Minsung Kwon & Jong-June Jeon & Seung Beom Seo, 2019. "A Projection of Extreme Precipitation Based on a Selection of CMIP5 GCMs over North Korea," Sustainability, MDPI, vol. 11(7), pages 1-17, April.
    20. Jeanne Thibeault & Anji Seth, 2014. "Changing climate extremes in the Northeast United States: observations and projections from CMIP5," Climatic Change, Springer, vol. 127(2), pages 273-287, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42891-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.