IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38511-8.html
   My bibliography  Save this article

Observationally-constrained projections of an ice-free Arctic even under a low emission scenario

Author

Listed:
  • Yeon-Hee Kim

    (Pohang University of Science and Technology)

  • Seung-Ki Min

    (Pohang University of Science and Technology
    Yonsei University)

  • Nathan P. Gillett

    (Environment Climate Change Canada)

  • Dirk Notz

    (Universität Hamburg)

  • Elizaveta Malinina

    (Environment Climate Change Canada)

Abstract

The sixth assessment report of the IPCC assessed that the Arctic is projected to be on average practically ice-free in September near mid-century under intermediate and high greenhouse gas emissions scenarios, though not under low emissions scenarios, based on simulations from the latest generation Coupled Model Intercomparison Project Phase 6 (CMIP6) models. Here we show, using an attribution analysis approach, that a dominant influence of greenhouse gas increases on Arctic sea ice area is detectable in three observational datasets in all months of the year, but is on average underestimated by CMIP6 models. By scaling models’ sea ice response to greenhouse gases to best match the observed trend in an approach validated in an imperfect model test, we project an ice-free Arctic in September under all scenarios considered. These results emphasize the profound impacts of greenhouse gas emissions on the Arctic, and demonstrate the importance of planning for and adapting to a seasonally ice-free Arctic in the near future.

Suggested Citation

  • Yeon-Hee Kim & Seung-Ki Min & Nathan P. Gillett & Dirk Notz & Elizaveta Malinina, 2023. "Observationally-constrained projections of an ice-free Arctic even under a low emission scenario," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38511-8
    DOI: 10.1038/s41467-023-38511-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38511-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38511-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peter A. Stott & J. A. Kettleborough, 2002. "Erratum: Origins and estimates of uncertainty in predictions of twenty-first century temperature rise," Nature, Nature, vol. 417(6885), pages 205-205, May.
    2. Chad W. Thackeray & Alex Hall, 2019. "An emergent constraint on future Arctic sea-ice albedo feedback," Nature Climate Change, Nature, vol. 9(12), pages 972-978, December.
    3. Ying Sun & Xuebin Zhang & Francis W. Zwiers & Lianchun Song & Hui Wan & Ting Hu & Hong Yin & Guoyu Ren, 2014. "Rapid increase in the risk of extreme summer heat in Eastern China," Nature Climate Change, Nature, vol. 4(12), pages 1082-1085, December.
    4. Nathan P. Gillett & Megan Kirchmeier-Young & Aurélien Ribes & Hideo Shiogama & Gabriele C. Hegerl & Reto Knutti & Guillaume Gastineau & Jasmin G. John & Lijuan Li & Larissa Nazarenko & Nan Rosenbloom , 2021. "Constraining human contributions to observed warming since the pre-industrial period," Nature Climate Change, Nature, vol. 11(3), pages 207-212, March.
    5. Myles R. Allen & Peter A. Stott & John F. B. Mitchell & Reiner Schnur & Thomas L. Delworth, 2000. "Quantifying the uncertainty in forecasts of anthropogenic climate change," Nature, Nature, vol. 407(6804), pages 617-620, October.
    6. Peter A. Stott & J. A. Kettleborough, 2002. "Origins and estimates of uncertainty in predictions of twenty-first century temperature rise," Nature, Nature, vol. 416(6882), pages 723-726, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tonnang, Henri E.Z. & Hervé, Bisseleua D.B. & Biber-Freudenberger, Lisa & Salifu, Daisy & Subramanian, Sevgan & Ngowi, Valentine B. & Guimapi, Ritter Y.A. & Anani, Bruce & Kakmeni, Francois M.M. & Aff, 2017. "Advances in crop insect modelling methods—Towards a whole system approach," Ecological Modelling, Elsevier, vol. 354(C), pages 88-103.
    2. Simon Gosling & Jason Lowe & Glenn McGregor & Mark Pelling & Bruce Malamud, 2009. "Associations between elevated atmospheric temperature and human mortality: a critical review of the literature," Climatic Change, Springer, vol. 92(3), pages 299-341, February.
    3. A. Lopez & E. Suckling & F. Otto & A. Lorenz & D. Rowlands & M. Allen, 2015. "Towards a typology for constrained climate model forecasts," Climatic Change, Springer, vol. 132(1), pages 15-29, September.
    4. Timothy Garrett, 2011. "Are there basic physical constraints on future anthropogenic emissions of carbon dioxide?," Climatic Change, Springer, vol. 104(3), pages 437-455, February.
    5. Jean Charles Hourcade & Franck Lecocq, 2003. "Le taux d'actualisation contre le principe de précaution ? Leçons à partir du cas des politiques climatiques," Working Papers halshs-00000967, HAL.
    6. Jenny Cifuentes & Geovanny Marulanda & Antonio Bello & Javier Reneses, 2020. "Air Temperature Forecasting Using Machine Learning Techniques: A Review," Energies, MDPI, vol. 13(16), pages 1-28, August.
    7. Xavier Rodó & Mercedes Pascual & Francisco Doblas-Reyes & Alexander Gershunov & Dáithí Stone & Filippo Giorgi & Peter Hudson & James Kinter & Miquel-Àngel Rodríguez-Arias & Nils Stenseth & David Alons, 2013. "Climate change and infectious diseases: Can we meet the needs for better prediction?," Climatic Change, Springer, vol. 118(3), pages 625-640, June.
    8. Kesten C. Green & J. Scott Armstrong, 2007. "Global Warming: Forecasts by Scientists Versus Scientific Forecasts," Energy & Environment, , vol. 18(7), pages 997-1021, December.
    9. Qunying Luo & Li Wen & John McGregor & Bertrand Timbal, 2013. "A comparison of downscaling techniques in the projection of local climate change and wheat yields," Climatic Change, Springer, vol. 120(1), pages 249-261, September.
    10. Diebold, Francis X. & Rudebusch, Glenn D., 2022. "Probability assessments of an ice-free Arctic: Comparing statistical and climate model projections," Journal of Econometrics, Elsevier, vol. 231(2), pages 520-534.
    11. David Hidalgo García & Julián Arco Díaz & Adelaida Martín Martín & Emilio Gómez Cobos, 2022. "Spatiotemporal Analysis of Urban Thermal Effects Caused by Heat Waves through Remote Sensing," Sustainability, MDPI, vol. 14(19), pages 1-24, September.
    12. David Hidalgo García, 2023. "Evaluation and Analysis of the Effectiveness of the Main Mitigation Measures against Surface Urban Heat Islands in Different Local Climate Zones through Remote Sensing," Sustainability, MDPI, vol. 15(13), pages 1-23, July.
    13. McDermott, Shana M. & Finnoff, David C. & Shogren, Jason F. & Kennedy, Chris J., 2021. "When does natural science uncertainty translate into economic uncertainty?," Ecological Economics, Elsevier, vol. 184(C).
    14. Yuanfang Chai & Yao Yue & Louise J. Slater & Jiabo Yin & Alistair G. L. Borthwick & Tiexi Chen & Guojie Wang, 2022. "Constrained CMIP6 projections indicate less warming and a slower increase in water availability across Asia," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    15. Teodor Kitczak & Heidi Jänicke & Marek Bury & Ryszard Malinowski, 2021. "The Usefulness of Mixtures with Festulolium braunii for the Regeneration of Grassland under Progressive Climate Change," Agriculture, MDPI, vol. 11(6), pages 1-20, June.
    16. Linze Li & Chengsheng Jiang & Raghu Murtugudde & Xin-Zhong Liang & Amir Sapkota, 2021. "Global Population Exposed to Extreme Events in the 150 Most Populated Cities of the World: Implications for Public Health," IJERPH, MDPI, vol. 18(3), pages 1-11, February.
    17. Meng, Fanchao & Zhang, Lei & Ren, Guoyu & Zhang, Ruixue, 2023. "Impacts of UHI on variations in cooling loads in buildings during heatwaves: A case study of Beijing and Tianjin, China," Energy, Elsevier, vol. 273(C).
    18. Guoyong Leng & Qiuhong Tang & Shengzhi Huang & Xuejun Zhang, 2016. "Extreme hot summers in China in the CMIP5 climate models," Climatic Change, Springer, vol. 135(3), pages 669-681, April.
    19. Yuqing Zhang & Guangxiong Mao & Changchun Chen & Liucheng Shen & Binyu Xiao, 2021. "Population Exposure to Compound Droughts and Heatwaves in the Observations and ERA5 Reanalysis Data in the Gan River Basin, China," Land, MDPI, vol. 10(10), pages 1-28, September.
    20. Ali Ahmadalipour & Hamid Moradkhani & Mukesh Kumar, 2019. "Mortality risk from heat stress expected to hit poorest nations the hardest," Climatic Change, Springer, vol. 152(3), pages 569-579, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38511-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.