IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v92y2009i3p299-341.html
   My bibliography  Save this article

Associations between elevated atmospheric temperature and human mortality: a critical review of the literature

Author

Listed:
  • Simon Gosling
  • Jason Lowe
  • Glenn McGregor
  • Mark Pelling
  • Bruce Malamud

Abstract

No abstract is available for this item.

Suggested Citation

  • Simon Gosling & Jason Lowe & Glenn McGregor & Mark Pelling & Bruce Malamud, 2009. "Associations between elevated atmospheric temperature and human mortality: a critical review of the literature," Climatic Change, Springer, vol. 92(3), pages 299-341, February.
  • Handle: RePEc:spr:climat:v:92:y:2009:i:3:p:299-341
    DOI: 10.1007/s10584-008-9441-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-008-9441-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-008-9441-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Smoyer, Karen E., 1998. "Putting risk in its place: methodological considerations for investigating extreme event health risk," Social Science & Medicine, Elsevier, vol. 47(11), pages 1809-1824, December.
    2. Peter A. Stott & J. A. Kettleborough, 2002. "Erratum: Origins and estimates of uncertainty in predictions of twenty-first century temperature rise," Nature, Nature, vol. 417(6885), pages 205-205, May.
    3. Yasushi Honda & Masaji Ono & Akihiko Sasaki & Iwao Uchiyama, 1998. "Shift of the short-term temperature mortality relationship by a climate factor - some evidence necessary to take account of in estimating the health effect of global warming," Journal of Risk Research, Taylor & Francis Journals, vol. 1(3), pages 209-220, July.
    4. Knowlton, K. & Lynn, B. & Goldberg, R.A. & Rosenzweig, C. & Hogrefe, C. & Rosenthal, J.K. & Kinney, P.L., 2007. "Projecting heat-related mortality impacts under a changing climate in the New York City region," American Journal of Public Health, American Public Health Association, vol. 97(11), pages 2028-2034.
    5. Kaiser, R. & Le Tertre, A. & Schwartz, J. & Gotway, C.A. & Daley, W.R. & Rubin, C.H., 2007. "The effect of the 1995 heat wave in Chicago on all-cause and cause-specific mortality," American Journal of Public Health, American Public Health Association, vol. 97(S1), pages 158-162.
    6. Peter A. Stott & D. A. Stone & M. R. Allen, 2004. "Human contribution to the European heatwave of 2003," Nature, Nature, vol. 432(7017), pages 610-614, December.
    7. James M. Murphy & David M. H. Sexton & David N. Barnett & Gareth S. Jones & Mark J. Webb & Matthew Collins & David A. Stainforth, 2004. "Quantification of modelling uncertainties in a large ensemble of climate change simulations," Nature, Nature, vol. 430(7001), pages 768-772, August.
    8. Thomas F. Stocker, 2004. "Models change their tune," Nature, Nature, vol. 430(7001), pages 737-738, August.
    9. Whitman, S. & Good, G. & Donoghue, E.R. & Benbow, N. & Shou, W. & Mou, S., 1997. "Mortality in Chicago attributed to the July 1995 heat wave," American Journal of Public Health, American Public Health Association, vol. 87(9), pages 1515-1518.
    10. Vandentorren, S. & Suzan, F. & Medina, S. & Pascal, M. & Maulpoix, A. & Cohen, J.-C. & Ledrans, M., 2004. "Mortality in 13 French cities during the August 2003 heat wave," American Journal of Public Health, American Public Health Association, vol. 94(9), pages 1518-1520.
    11. D. A. Stainforth & T. Aina & C. Christensen & M. Collins & N. Faull & D. J. Frame & J. A. Kettleborough & S. Knight & A. Martin & J. M. Murphy & C. Piani & D. Sexton & L. A. Smith & R. A. Spicer & A. , 2005. "Uncertainty in predictions of the climate response to rising levels of greenhouse gases," Nature, Nature, vol. 433(7024), pages 403-406, January.
    12. Peter A. Stott & J. A. Kettleborough, 2002. "Origins and estimates of uncertainty in predictions of twenty-first century temperature rise," Nature, Nature, vol. 416(6882), pages 723-726, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. Lopez & E. Suckling & F. Otto & A. Lorenz & D. Rowlands & M. Allen, 2015. "Towards a typology for constrained climate model forecasts," Climatic Change, Springer, vol. 132(1), pages 15-29, September.
    2. Amruta Nori-Sarma & Tarik Benmarhnia & Ajit Rajiva & Gulrez Shah Azhar & Prakash Gupta & Mangesh S. Pednekar & Michelle L. Bell, 2019. "Advancing our Understanding of Heat Wave Criteria and Associated Health Impacts to Improve Heat Wave Alerts in Developing Country Settings," IJERPH, MDPI, vol. 16(12), pages 1-13, June.
    3. Nigel W. Arnell & Emma L. Tompkins & W. Neil Adger, 2005. "Eliciting Information from Experts on the Likelihood of Rapid Climate Change," Risk Analysis, John Wiley & Sons, vol. 25(6), pages 1419-1431, December.
    4. Kesten C. Green & J. Scott Armstrong, 2007. "Global Warming: Forecasts by Scientists Versus Scientific Forecasts," Energy & Environment, , vol. 18(7), pages 997-1021, December.
    5. Schallaböck, Karl Otto & Fischedick, Manfred & Brouns, Bernd & Luhmann, Hans-Jochen & Merten, Frank, 2006. "Klimawirksame Emissionen des PKW-Verkehrs und Bewertung von Minderungsstrategien," Wuppertal Spezial, Wuppertal Institute for Climate, Environment and Energy, volume 34, number 34.
    6. John Nairn & Bertram Ostendorf & Peng Bi, 2018. "Performance of Excess Heat Factor Severity as a Global Heatwave Health Impact Index," IJERPH, MDPI, vol. 15(11), pages 1-26, November.
    7. Tonnang, Henri E.Z. & Hervé, Bisseleua D.B. & Biber-Freudenberger, Lisa & Salifu, Daisy & Subramanian, Sevgan & Ngowi, Valentine B. & Guimapi, Ritter Y.A. & Anani, Bruce & Kakmeni, Francois M.M. & Aff, 2017. "Advances in crop insect modelling methods—Towards a whole system approach," Ecological Modelling, Elsevier, vol. 354(C), pages 88-103.
    8. G. Brooke Anderson & Keith W. Oleson & Bryan Jones & Roger D. Peng, 2018. "Classifying heatwaves: developing health-based models to predict high-mortality versus moderate United States heatwaves," Climatic Change, Springer, vol. 146(3), pages 439-453, February.
    9. Wei, Yi-Ming & Mi, Zhi-Fu & Huang, Zhimin, 2015. "Climate policy modeling: An online SCI-E and SSCI based literature review," Omega, Elsevier, vol. 57(PA), pages 70-84.
    10. Vaneckova, Pavla & Beggs, Paul J. & Jacobson, Carol R., 2010. "Spatial analysis of heat-related mortality among the elderly between 1993 and 2004 in Sydney, Australia," Social Science & Medicine, Elsevier, vol. 70(2), pages 293-304, January.
    11. Sue Smith & Alex J. Elliot & Shakoor Hajat & Angie Bone & Chris Bates & Gillian E. Smith & Sari Kovats, 2016. "The Impact of Heatwaves on Community Morbidity and Healthcare Usage: A Retrospective Observational Study Using Real-Time Syndromic Surveillance," IJERPH, MDPI, vol. 13(1), pages 1-12, January.
    12. Timothy Garrett, 2011. "Are there basic physical constraints on future anthropogenic emissions of carbon dioxide?," Climatic Change, Springer, vol. 104(3), pages 437-455, February.
    13. Jean Charles Hourcade & Franck Lecocq, 2003. "Le taux d'actualisation contre le principe de précaution ? Leçons à partir du cas des politiques climatiques," Working Papers halshs-00000967, HAL.
    14. Frigg, Roman & Smith, Leonard A. & Stainforth, David A., 2015. "An assessment of the foundational assumptions inhigh-resolution climate projections: the case of UKCP09," LSE Research Online Documents on Economics 61635, London School of Economics and Political Science, LSE Library.
    15. Jenny Cifuentes & Geovanny Marulanda & Antonio Bello & Javier Reneses, 2020. "Air Temperature Forecasting Using Machine Learning Techniques: A Review," Energies, MDPI, vol. 13(16), pages 1-28, August.
    16. Xavier Rodó & Mercedes Pascual & Francisco Doblas-Reyes & Alexander Gershunov & Dáithí Stone & Filippo Giorgi & Peter Hudson & James Kinter & Miquel-Àngel Rodríguez-Arias & Nils Stenseth & David Alons, 2013. "Climate change and infectious diseases: Can we meet the needs for better prediction?," Climatic Change, Springer, vol. 118(3), pages 625-640, June.
    17. Kathryn C. Conlon & Kristina W. Kintziger & Meredith Jagger & Lydia Stefanova & Christopher K. Uejio & Charles Konrad, 2016. "Working with Climate Projections to Estimate Disease Burden: Perspectives from Public Health," IJERPH, MDPI, vol. 13(8), pages 1-23, August.
    18. Yeon-Hee Kim & Seung-Ki Min & Nathan P. Gillett & Dirk Notz & Elizaveta Malinina, 2023. "Observationally-constrained projections of an ice-free Arctic even under a low emission scenario," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    19. Steffen Merte, 2017. "Estimating heat wave-related mortality in Europe using singular spectrum analysis," Climatic Change, Springer, vol. 142(3), pages 321-330, June.
    20. Bielec-Bąkowska Zuzanna, 2016. "Long-term variability of the frequency and persistence of strong highs over Poland," Environmental & Socio-economic Studies, Sciendo, vol. 4(1), pages 12-23, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:92:y:2009:i:3:p:299-341. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.