IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36834-0.html
   My bibliography  Save this article

Softness of hydrated salt crystals under deliquescence

Author

Listed:
  • Rozeline Wijnhorst

    (University of Amsterdam)

  • Menno Demmenie

    (University of Amsterdam)

  • Etienne Jambon-Puillet

    (University of Amsterdam
    ETH Zurich)

  • Freek Ariese

    (Vrije Universiteit Amsterdam)

  • Daniel Bonn

    (University of Amsterdam)

  • Noushine Shahidzadeh

    (University of Amsterdam)

Abstract

Deliquescence is a first-order phase transition, happening when a salt absorbs water vapor. This has a major impact on the stability of crystalline powders that are important for example in pharmacology, food science and for our environment and climate. Here we show that during deliquescence, the abundant salt sodium sulfate decahydrate, mirabilite (Na2SO4·10H2O), behaves differently than anhydrous salts. Using various microscopy techniques combined with Raman spectroscopy, we show that mirabilite crystals not only lose their facets but also become soft and deformable. As a result, microcrystals of mirabilite simultaneously behave crystalline-like in the core bulk and liquid-like at the surface. Defects at the surface can heal at a speed much faster than the deliquescence rate by the mechanism of visco-capillary flow over the surface. While magnesium sulfate hexahydrate (MgSO4⋅6H2O) behaves similarly during deliquescence, a soft and deformable state is completely absent for the anhydrous salts sodium chloride (NaCl) and sodium sulfate thenardite (Na2SO4). The results highlight the effect of crystalline water, and its mobility in the crystalline structure on the observed softness during deliquescence. Controlled hydrated salts have potential applications such as thermal energy storage, where the key parameter is relative humidity rather than temperature.

Suggested Citation

  • Rozeline Wijnhorst & Menno Demmenie & Etienne Jambon-Puillet & Freek Ariese & Daniel Bonn & Noushine Shahidzadeh, 2023. "Softness of hydrated salt crystals under deliquescence," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36834-0
    DOI: 10.1038/s41467-023-36834-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36834-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36834-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David T. Vaniman & David L. Bish & Steve J. Chipera & Claire I. Fialips & J. William Carey & William C. Feldman, 2004. "Magnesium sulphate salts and the history of water on Mars," Nature, Nature, vol. 431(7009), pages 663-665, October.
    2. D. M. Foster & Th. Pavloudis & J. Kioseoglou & R. E. Palmer, 2019. "Atomic-resolution imaging of surface and core melting in individual size-selected Au nanoclusters on carbon," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    3. Donkers, P.A.J. & Sögütoglu, L.C. & Huinink, H.P. & Fischer, H.R. & Adan, O.C.G., 2017. "A review of salt hydrates for seasonal heat storage in domestic applications," Applied Energy, Elsevier, vol. 199(C), pages 45-68.
    4. Emanuela Mastronardo & Emanuele La Mazza & Davide Palamara & Elpida Piperopoulos & Daniela Iannazzo & Edoardo Proverbio & Candida Milone, 2022. "Organic Salt Hydrate as a Novel Paradigm for Thermal Energy Storage," Energies, MDPI, vol. 15(12), pages 1-13, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Geraint Sullivan & Chris Griffiths & Eifion Jewell & Justin Searle & Jonathon Elvins, 2023. "Cycling Stability of Calcium-Impregnated Vermiculite in Open Reactor Used as a Thermochemical Storage Material," Energies, MDPI, vol. 16(21), pages 1-12, October.
    2. Shkatulov, A.I. & Houben, J. & Fischer, H. & Huinink, H.P., 2020. "Stabilization of K2CO3 in vermiculite for thermochemical energy storage," Renewable Energy, Elsevier, vol. 150(C), pages 990-1000.
    3. Li, Wei & Klemeš, Jiří Jaromír & Wang, Qiuwang & Zeng, Min, 2020. "Development and characteristics analysis of salt-hydrate based composite sorbent for low-grade thermochemical energy storage," Renewable Energy, Elsevier, vol. 157(C), pages 920-940.
    4. Hu, Yige & Wang, Hang & Chen, Hu & Ding, Yang & Liu, Changtian & Jiang, Feng & Ling, Xiang, 2023. "A novel hydrated salt-based phase change material for medium- and low-thermal energy storage," Energy, Elsevier, vol. 274(C).
    5. Gao, J.T. & Xu, Z.Y. & Wang, R.Z., 2020. "Experimental study on a double-stage absorption solar thermal storage system with enhanced energy storage density," Applied Energy, Elsevier, vol. 262(C).
    6. Isye Hayatina & Amar Auckaili & Mohammed Farid, 2023. "Review on Salt Hydrate Thermochemical Heat Transformer," Energies, MDPI, vol. 16(12), pages 1-23, June.
    7. Pujari, Ankush Shankar & Majumdar, Rudrodip & Saha, Sandip K. & Subramaniam, Chandramouli, 2023. "Annular vertical cylindrical thermochemical storage system with innovative flow arrangements for improved heat dispatch towards space heating requirements," Renewable Energy, Elsevier, vol. 217(C).
    8. Chate, Akshay & Sharma, Rakesh & S, Srinivasa Murthy & Dutta, Pradip, 2022. "Studies on a potassium carbonate salt hydrate based thermochemical energy storage system," Energy, Elsevier, vol. 258(C).
    9. Yujie Su & Yi Yang & Guoqing He & Renhua Liu & De Ding, 2024. "Two-Stage Solar–NaOH Thermochemical Heat Pump Heating System for Building Heating: Operations Strategies and Theoretical Performance," Energies, MDPI, vol. 17(8), pages 1-16, April.
    10. Mamani, V. & Gutiérrez, A. & Fernández, A.I. & Ushak, S., 2020. "Industrial carnallite-waste for thermochemical energy storage application," Applied Energy, Elsevier, vol. 265(C).
    11. Han, Xiaojing & Liu, Shuli & Zeng, Cheng & Yang, Liu & Shukla, Ashish & Shen, Yongliang, 2020. "Investigating the performance enhancement of copper fins on trapezoidal thermochemical reactor," Renewable Energy, Elsevier, vol. 150(C), pages 1037-1046.
    12. Romaní, Joaquim & Gasia, Jaume & Solé, Aran & Takasu, Hiroki & Kato, Yukitaka & Cabeza, Luisa F., 2019. "Evaluation of energy density as performance indicator for thermal energy storage at material and system levels," Applied Energy, Elsevier, vol. 235(C), pages 954-962.
    13. Mukherjee, Ankit & Pujari, Ankush Shankar & Shinde, Shraddha Nitin & Kashyap, Uddip & Kumar, Lalit & Subramaniam, Chandramouli & Saha, Sandip K., 2022. "Performance assessment of open thermochemical energy storage system for seasonal space heating in highly humid environment," Renewable Energy, Elsevier, vol. 201(P1), pages 204-223.
    14. Bryan Li & Louise Buisson & Ruby-Jean Clark & Svetlana Ushak & Mohammed Farid, 2024. "A Eutectic Mixture of Calcium Chloride Hexahydrate and Bischofite with Promising Performance for Thermochemical Energy Storage," Energies, MDPI, vol. 17(3), pages 1-18, January.
    15. Pim Donkers & Kun Gao & Jelle Houben & Henk Huinink & Bart Erich & Olaf Adan, 2020. "Effect of Non-Condensable Gasses on the Performance of a Vacuum Thermochemical Reactor," Energies, MDPI, vol. 13(2), pages 1-24, January.
    16. Wang, L.W. & Jiang, L. & Gao, J. & Gao, P. & Wang, R.Z., 2017. "Analysis of resorption working pairs for air conditioners of electric vehicles," Applied Energy, Elsevier, vol. 207(C), pages 594-603.
    17. N’Tsoukpoe, Kokouvi Edem & Kuznik, Frédéric, 2021. "A reality check on long-term thermochemical heat storage for household applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    18. Edyta Nartowska & Marta Styś-Maniara & Tomasz Kozłowski, 2023. "The Potential Environmental and Social Influence of the Inorganic Salt Hydrates Used as a Phase Change Material for Thermal Energy Storage in Solar Installations," IJERPH, MDPI, vol. 20(2), pages 1-21, January.
    19. Bennici, Simona & Dutournié, Patrick & Cathalan, Jérémy & Zbair, Mohamed & Nguyen, Minh Hoang & Scuiller, Elliot & Vaulot, Cyril, 2022. "Heat storage: Hydration investigation of MgSO4/active carbon composites, from material development to domestic applications scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    20. Jun Li & Tao Zeng & Noriyuki Kobayashi & Haotai Xu & Yu Bai & Lisheng Deng & Zhaohong He & Hongyu Huang, 2019. "Lithium Hydroxide Reaction for Low Temperature Chemical Heat Storage: Hydration and Dehydration Reaction," Energies, MDPI, vol. 12(19), pages 1-13, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36834-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.