IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33145-8.html
   My bibliography  Save this article

Energy comparison of sequential and integrated CO2 capture and electrochemical conversion

Author

Listed:
  • Mengran Li

    (the Delft University of Technology)

  • Erdem Irtem

    (the Delft University of Technology)

  • Hugo-Pieter Iglesias van Montfort

    (the Delft University of Technology)

  • Maryam Abdinejad

    (the Delft University of Technology)

  • Thomas Burdyny

    (the Delft University of Technology)

Abstract

Integrating carbon dioxide (CO2) electrolysis with CO2 capture provides exciting new opportunities for energy reductions by simultaneously removing the energy-demanding regeneration step in CO2 capture and avoiding critical issues faced by CO2 gas-fed electrolysers. However, understanding the potential energy advantages of an integrated process is not straightforward due to the interconnected processes which require knowledge of both capture and electrochemical conversion processes. Here, we identify the upper limits of the integrated process from an energy perspective by comparing the working principles and performance of integrated and sequential approaches. Our high-level energy analyses unveil that an integrated electrolyser must show similar performance to the gas-fed electrolyser to ensure an energy benefit of up to 44% versus the sequential route. However, such energy benefits diminish if future gas-fed electrolysers resolve the CO2 utilisation issue and if an integrated electrolyser shows lower conversion efficiencies than the gas-fed system.

Suggested Citation

  • Mengran Li & Erdem Irtem & Hugo-Pieter Iglesias van Montfort & Maryam Abdinejad & Thomas Burdyny, 2022. "Energy comparison of sequential and integrated CO2 capture and electrochemical conversion," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33145-8
    DOI: 10.1038/s41467-022-33145-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33145-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33145-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rosa M. Arán-Ais & Fabian Scholten & Sebastian Kunze & Rubén Rizo & Beatriz Roldan Cuenya, 2020. "The role of in situ generated morphological motifs and Cu(i) species in C2+ product selectivity during CO2 pulsed electroreduction," Nature Energy, Nature, vol. 5(4), pages 317-325, April.
    2. Ahmad, Naveed & Wang, Xiaoxiao & Sun, Peixu & Chen, Ying & Rehman, Fahad & Xu, Jian & Xu, Xia, 2021. "Electrochemical CO2 reduction to CO facilitated by MDEA-based deep eutectic solvent in aqueous solution," Renewable Energy, Elsevier, vol. 177(C), pages 23-33.
    3. Geonhui Lee & Yuguang C. Li & Ji-Yong Kim & Tao Peng & Dae-Hyun Nam & Armin Sedighian Rasouli & Fengwang Li & Mingchuan Luo & Alexander H. Ip & Young-Chang Joo & Edward H. Sargent, 2021. "Electrochemical upgrade of CO2 from amine capture solution," Nature Energy, Nature, vol. 6(1), pages 46-53, January.
    4. Zhuo Xing & Lin Hu & Donald S. Ripatti & Xun Hu & Xiaofeng Feng, 2021. "Enhancing carbon dioxide gas-diffusion electrolysis by creating a hydrophobic catalyst microenvironment," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    5. Haeun Shin & Kentaro U. Hansen & Feng Jiao, 2021. "Techno-economic assessment of low-temperature carbon dioxide electrolysis," Nature Sustainability, Nature, vol. 4(10), pages 911-919, October.
    6. Joshua A. Rabinowitz & Matthew W. Kanan, 2020. "The future of low-temperature carbon dioxide electrolysis depends on solving one basic problem," Nature Communications, Nature, vol. 11(1), pages 1-3, December.
    7. Yue, Pengtao & Kang, Zhongyin & Fu, Qian & Li, Jun & Zhang, Liang & Zhu, Xun & Liao, Qiang, 2021. "Life cycle and economic analysis of chemicals production via electrolytic (bi)carbonate and gaseous CO2 conversion," Applied Energy, Elsevier, vol. 304(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cornelius A. Obasanjo & Guorui Gao & Jackson Crane & Viktoria Golovanova & F. Pelayo García de Arquer & Cao-Thang Dinh, 2023. "High-rate and selective conversion of CO2 from aqueous solutions to hydrocarbons," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Bin Shao & Zhi-Qiang Wang & Xue-Qing Gong & Honglai Liu & Feng Qian & P. Hu & Jun Hu, 2023. "Synergistic promotions between CO2 capture and in-situ conversion on Ni-CaO composite catalyst," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kezia Megagita Gerby Langie & Kyungjae Tak & Changsoo Kim & Hee Won Lee & Kwangho Park & Dongjin Kim & Wonsang Jung & Chan Woo Lee & Hyung-Suk Oh & Dong Ki Lee & Jai Hyun Koh & Byoung Koun Min & Da Hy, 2022. "Toward economical application of carbon capture and utilization technology with near-zero carbon emission," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Ke Xie & Rui Kai Miao & Adnan Ozden & Shijie Liu & Zhu Chen & Cao-Thang Dinh & Jianan Erick Huang & Qiucheng Xu & Christine M. Gabardo & Geonhui Lee & Jonathan P. Edwards & Colin P. O’Brien & Shannon , 2022. "Bipolar membrane electrolyzers enable high single-pass CO2 electroreduction to multicarbon products," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Erfan Shirzadi & Qiu Jin & Ali Shayesteh Zeraati & Roham Dorakhan & Tiago J. Goncalves & Jehad Abed & Byoung-Hoon Lee & Armin Sedighian Rasouli & Joshua Wicks & Jinqiang Zhang & Pengfei Ou & Victor Bo, 2024. "Ligand-modified nanoparticle surfaces influence CO electroreduction selectivity," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Carina Yi Jing Lim & Meltem Yilmaz & Juan Manuel Arce-Ramos & Albertus D. Handoko & Wei Jie Teh & Yuangang Zheng & Zi Hui Jonathan Khoo & Ming Lin & Mark Isaacs & Teck Lip Dexter Tam & Yang Bai & Chee, 2023. "Surface charge as activity descriptors for electrochemical CO2 reduction to multi-carbon products on organic-functionalised Cu," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Cornelius A. Obasanjo & Guorui Gao & Jackson Crane & Viktoria Golovanova & F. Pelayo García de Arquer & Cao-Thang Dinh, 2023. "High-rate and selective conversion of CO2 from aqueous solutions to hydrocarbons," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Shashwati C. Cunha & Joaquin Resasco, 2023. "Maximizing single-pass conversion does not result in practical readiness for CO2 reduction electrolyzers," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    7. Ahmad, Naveed & Chen, Ying & Wang, Xiaoxiao & Sun, Peixu & Bao, Yuting & Xu, Xia, 2022. "Highly efficient electrochemical upgrade of CO2 to CO using AMP capture solution as electrolyte," Renewable Energy, Elsevier, vol. 189(C), pages 444-453.
    8. Xueping Qin & Heine A. Hansen & Karoliina Honkala & Marko M. Melander, 2023. "Cation-induced changes in the inner- and outer-sphere mechanisms of electrocatalytic CO2 reduction," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Marvin L. Frisch & Longfei Wu & Clément Atlan & Zhe Ren & Madeleine Han & Rémi Tucoulou & Liang Liang & Jiasheng Lu & An Guo & Hong Nhan Nong & Aleks Arinchtein & Michael Sprung & Julie Villanova & Ma, 2023. "Unraveling the synergistic effects of Cu-Ag tandem catalysts during electrochemical CO2 reduction using nanofocused X-ray probes," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    10. Meng He & Yongmeng Wu & Rui Li & Yuting Wang & Cuibo Liu & Bin Zhang, 2023. "Aqueous pulsed electrochemistry promotes C−N bond formation via a one-pot cascade approach," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    11. Kaili Yao & Jun Li & Adnan Ozden & Haibin Wang & Ning Sun & Pengyu Liu & Wen Zhong & Wei Zhou & Jieshu Zhou & Xi Wang & Hanqi Liu & Yongchang Liu & Songhua Chen & Yongfeng Hu & Ziyun Wang & David Sint, 2024. "In situ copper faceting enables efficient CO2/CO electrolysis," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    12. Jun Qi & Yadong Du & Qi Yang & Na Jiang & Jiachun Li & Yi Ma & Yangjun Ma & Xin Zhao & Jieshan Qiu, 2023. "Energy-saving and product-oriented hydrogen peroxide electrosynthesis enabled by electrochemistry pairing and product engineering," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    13. Yanmei Huang & Caihong He & Chuanqi Cheng & Shuhe Han & Meng He & Yuting Wang & Nannan Meng & Bin Zhang & Qipeng Lu & Yifu Yu, 2023. "Pulsed electroreduction of low-concentration nitrate to ammonia," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    14. Mengyang Fan & Rui Kai Miao & Pengfei Ou & Yi Xu & Zih-Yi Lin & Tsung-Ju Lee & Sung-Fu Hung & Ke Xie & Jianan Erick Huang & Weiyan Ni & Jun Li & Yong Zhao & Adnan Ozden & Colin P. O’Brien & Yuanjun Ch, 2023. "Single-site decorated copper enables energy- and carbon-efficient CO2 methanation in acidic conditions," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    15. Fiammetta Rita Bianchi & Barbara Bosio, 2021. "Operating Principles, Performance and Technology Readiness Level of Reversible Solid Oxide Cells," Sustainability, MDPI, vol. 13(9), pages 1-23, April.
    16. Xiaojie She & Lingling Zhai & Yifei Wang & Pei Xiong & Molly Meng-Jung Li & Tai-Sing Wu & Man Chung Wong & Xuyun Guo & Zhihang Xu & Huaming Li & Hui Xu & Ye Zhu & Shik Chi Edman Tsang & Shu Ping Lau, 2024. "Pure-water-fed, electrocatalytic CO2 reduction to ethylene beyond 1,000 h stability at 10 A," Nature Energy, Nature, vol. 9(1), pages 81-91, January.
    17. Jin Zhang & Chenxi Guo & Susu Fang & Xiaotong Zhao & Le Li & Haoyang Jiang & Zhaoyang Liu & Ziqi Fan & Weigao Xu & Jianping Xiao & Miao Zhong, 2023. "Accelerating electrochemical CO2 reduction to multi-carbon products via asymmetric intermediate binding at confined nanointerfaces," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    18. Jeongjin Kim & Youngseok Yu & Tae Won Go & Jean-Jacques Gallet & Fabrice Bournel & Bongjin Simon Mun & Jeong Young Park, 2023. "Revealing CO2 dissociation pathways at vicinal copper (997) interfaces," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    19. Yan Lin & Tuo Wang & Lili Zhang & Gong Zhang & Lulu Li & Qingfeng Chang & Zifan Pang & Hui Gao & Kai Huang & Peng Zhang & Zhi-Jian Zhao & Chunlei Pei & Jinlong Gong, 2023. "Tunable CO2 electroreduction to ethanol and ethylene with controllable interfacial wettability," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    20. Xin Chen & Junxiang Chen & Huayu Chen & Qiqi Zhang & Jiaxuan Li & Jiwei Cui & Yanhui Sun & Defa Wang & Jinhua Ye & Lequan Liu, 2023. "Promoting water dissociation for efficient solar driven CO2 electroreduction via improving hydroxyl adsorption," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33145-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.