IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41348-w.html
   My bibliography  Save this article

Maximizing single-pass conversion does not result in practical readiness for CO2 reduction electrolyzers

Author

Listed:
  • Shashwati C. Cunha

    (The University of Texas at Austin)

  • Joaquin Resasco

    (The University of Texas at Austin)

Abstract

For many chemical processes, high single-pass conversion of reactants into products reduces the need to separate products downstream. However, low-temperature carbon dioxide electrolyzers that maximize single-pass conversion suffer from low product concentration. Maximizing product concentration is therefore a more meaningful target for CO2 electrolyzers than maximizing single-pass conversion.

Suggested Citation

  • Shashwati C. Cunha & Joaquin Resasco, 2023. "Maximizing single-pass conversion does not result in practical readiness for CO2 reduction electrolyzers," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41348-w
    DOI: 10.1038/s41467-023-41348-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41348-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41348-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ke Xie & Rui Kai Miao & Adnan Ozden & Shijie Liu & Zhu Chen & Cao-Thang Dinh & Jianan Erick Huang & Qiucheng Xu & Christine M. Gabardo & Geonhui Lee & Jonathan P. Edwards & Colin P. O’Brien & Shannon , 2022. "Bipolar membrane electrolyzers enable high single-pass CO2 electroreduction to multicarbon products," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Haeun Shin & Kentaro U. Hansen & Feng Jiao, 2021. "Techno-economic assessment of low-temperature carbon dioxide electrolysis," Nature Sustainability, Nature, vol. 4(10), pages 911-919, October.
    3. Joshua A. Rabinowitz & Matthew W. Kanan, 2020. "The future of low-temperature carbon dioxide electrolysis depends on solving one basic problem," Nature Communications, Nature, vol. 11(1), pages 1-3, December.
    4. Adnan Ozden & Jun Li & Sharath Kandambeth & Xiao-Yan Li & Shijie Liu & Osama Shekhah & Pengfei Ou & Y. Zou Finfrock & Ya-Kun Wang & Tartela Alkayyali & F. Pelayo García de Arquer & Vinayak S. Kale & P, 2023. "Energy- and carbon-efficient CO2/CO electrolysis to multicarbon products via asymmetric ion migration–adsorption," Nature Energy, Nature, vol. 8(2), pages 179-190, February.
    5. Edwards, Jonathan P. & Xu, Yi & Gabardo, Christine M. & Dinh, Cao-Thang & Li, Jun & Qi, ZhenBang & Ozden, Adnan & Sargent, Edward H. & Sinton, David, 2020. "Efficient electrocatalytic conversion of carbon dioxide in a low-resistance pressurized alkaline electrolyzer," Applied Energy, Elsevier, vol. 261(C).
    6. Adnan Ozden & F. Pelayo García de Arquer & Jianan Erick Huang & Joshua Wicks & Jared Sisler & Rui Kai Miao & Colin P. O’Brien & Geonhui Lee & Xue Wang & Alexander H. Ip & Edward H. Sargent & David Sin, 2022. "Carbon-efficient carbon dioxide electrolysers," Nature Sustainability, Nature, vol. 5(7), pages 563-573, July.
    7. Brian Seger & Marc Robert & Feng Jiao, 2023. "Best practices for electrochemical reduction of carbon dioxide," Nature Sustainability, Nature, vol. 6(3), pages 236-238, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Doris Segets & Corina Andronescu & Ulf-Peter Apfel, 2023. "Accelerating CO2 electrochemical conversion towards industrial implementation," Nature Communications, Nature, vol. 14(1), pages 1-5, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Doris Segets & Corina Andronescu & Ulf-Peter Apfel, 2023. "Accelerating CO2 electrochemical conversion towards industrial implementation," Nature Communications, Nature, vol. 14(1), pages 1-5, December.
    2. Kaili Yao & Jun Li & Adnan Ozden & Haibin Wang & Ning Sun & Pengyu Liu & Wen Zhong & Wei Zhou & Jieshu Zhou & Xi Wang & Hanqi Liu & Yongchang Liu & Songhua Chen & Yongfeng Hu & Ziyun Wang & David Sint, 2024. "In situ copper faceting enables efficient CO2/CO electrolysis," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Mengran Li & Erdem Irtem & Hugo-Pieter Iglesias van Montfort & Maryam Abdinejad & Thomas Burdyny, 2022. "Energy comparison of sequential and integrated CO2 capture and electrochemical conversion," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Mengyang Fan & Rui Kai Miao & Pengfei Ou & Yi Xu & Zih-Yi Lin & Tsung-Ju Lee & Sung-Fu Hung & Ke Xie & Jianan Erick Huang & Weiyan Ni & Jun Li & Yong Zhao & Adnan Ozden & Colin P. O’Brien & Yuanjun Ch, 2023. "Single-site decorated copper enables energy- and carbon-efficient CO2 methanation in acidic conditions," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    5. Xiaojie She & Lingling Zhai & Yifei Wang & Pei Xiong & Molly Meng-Jung Li & Tai-Sing Wu & Man Chung Wong & Xuyun Guo & Zhihang Xu & Huaming Li & Hui Xu & Ye Zhu & Shik Chi Edman Tsang & Shu Ping Lau, 2024. "Pure-water-fed, electrocatalytic CO2 reduction to ethylene beyond 1,000 h stability at 10 A," Nature Energy, Nature, vol. 9(1), pages 81-91, January.
    6. Ke Xie & Rui Kai Miao & Adnan Ozden & Shijie Liu & Zhu Chen & Cao-Thang Dinh & Jianan Erick Huang & Qiucheng Xu & Christine M. Gabardo & Geonhui Lee & Jonathan P. Edwards & Colin P. O’Brien & Shannon , 2022. "Bipolar membrane electrolyzers enable high single-pass CO2 electroreduction to multicarbon products," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    7. Meng Wang & Bingqing Wang & Jiguang Zhang & Shibo Xi & Ning Ling & Ziyu Mi & Qin Yang & Mingsheng Zhang & Wan Ru Leow & Jia Zhang & Yanwei Lum, 2024. "Acidic media enables oxygen-tolerant electrosynthesis of multicarbon products from simulated flue gas," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Yumei Liu & Yun An & Jiexin Zhu & Lujun Zhu & Xiaomei Li & Peng Gao & Guanjie He & Quanquan Pang, 2024. "Integrated energy storage and CO2 conversion using an aqueous battery with tamed asymmetric reactions," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    9. Jiexin Zhu & Jiantao Li & Ruihu Lu & Ruohan Yu & Shiyong Zhao & Chengbo Li & Lei Lv & Lixue Xia & Xingbao Chen & Wenwei Cai & Jiashen Meng & Wei Zhang & Xuelei Pan & Xufeng Hong & Yuhang Dai & Yu Mao , 2023. "Surface passivation for highly active, selective, stable, and scalable CO2 electroreduction," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    10. Mai, Van-Phung & Yang, Ruey-Jen, 2020. "Boosting power generation from salinity gradient on high-density nanoporous membrane using thermal effect," Applied Energy, Elsevier, vol. 274(C).
    11. Amrita Goldar & Diya Dasgupta, 2023. "Beyond the Stocktake (Part II): Clean Energy Technologies," Indian Council for Research on International Economic Relations (ICRIER) Policy Paper 14, Indian Council for Research on International Economic Relations (ICRIER), New Delhi, India.
    12. Jun Qi & Yadong Du & Qi Yang & Na Jiang & Jiachun Li & Yi Ma & Yangjun Ma & Xin Zhao & Jieshan Qiu, 2023. "Energy-saving and product-oriented hydrogen peroxide electrosynthesis enabled by electrochemistry pairing and product engineering," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    13. Fiammetta Rita Bianchi & Barbara Bosio, 2021. "Operating Principles, Performance and Technology Readiness Level of Reversible Solid Oxide Cells," Sustainability, MDPI, vol. 13(9), pages 1-23, April.
    14. Jin Zhang & Chenxi Guo & Susu Fang & Xiaotong Zhao & Le Li & Haoyang Jiang & Zhaoyang Liu & Ziqi Fan & Weigao Xu & Jianping Xiao & Miao Zhong, 2023. "Accelerating electrochemical CO2 reduction to multi-carbon products via asymmetric intermediate binding at confined nanointerfaces," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    15. Xin Chen & Junxiang Chen & Huayu Chen & Qiqi Zhang & Jiaxuan Li & Jiwei Cui & Yanhui Sun & Defa Wang & Jinhua Ye & Lequan Liu, 2023. "Promoting water dissociation for efficient solar driven CO2 electroreduction via improving hydroxyl adsorption," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    16. Agnes E. Thorarinsdottir & Samuel S. Veroneau & Daniel G. Nocera, 2022. "Self-healing oxygen evolution catalysts," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    17. Erfan Shirzadi & Qiu Jin & Ali Shayesteh Zeraati & Roham Dorakhan & Tiago J. Goncalves & Jehad Abed & Byoung-Hoon Lee & Armin Sedighian Rasouli & Joshua Wicks & Jinqiang Zhang & Pengfei Ou & Victor Bo, 2024. "Ligand-modified nanoparticle surfaces influence CO electroreduction selectivity," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    18. Yufei Cao & Zhu Chen & Peihao Li & Adnan Ozden & Pengfei Ou & Weiyan Ni & Jehad Abed & Erfan Shirzadi & Jinqiang Zhang & David Sinton & Jun Ge & Edward H. Sargent, 2023. "Surface hydroxide promotes CO2 electrolysis to ethylene in acidic conditions," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    19. Shoujie Li & Wei Chen & Xiao Dong & Chang Zhu & Aohui Chen & Yanfang Song & Guihua Li & Wei Wei & Yuhan Sun, 2022. "Hierarchical micro/nanostructured silver hollow fiber boosts electroreduction of carbon dioxide," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    20. Hugo-Pieter Iglesias van Montfort & Mengran Li & Erdem Irtem & Maryam Abdinejad & Yuming Wu & Santosh K. Pal & Mark Sassenburg & Davide Ripepi & Siddhartha Subramanian & Jasper Biemolt & Thomas E. Ruf, 2023. "Non-invasive current collectors for improved current-density distribution during CO2 electrolysis on super-hydrophobic electrodes," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41348-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.