IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-32794-z.html
   My bibliography  Save this article

The role of concentration in electrolyte solutions for non-aqueous lithium-based batteries

Author

Listed:
  • Guinevere A. Giffin

    (Fraunhofer Institute for Silicate Research
    Julius-Maximilians-University Würzburg)

Abstract

The main components and, most notably, the concentration of the non-aqueous electrolyte solution have not significantly changed since the commercialization of Li-ion batteries in the early 1990s. However, the quest for electrochemical energy storage systems with high-energy content has driven researchers to reconsider the suitability of the “standard” one molar concentration and look toward highly concentrated electrolyte solutions. However, the interplay between the fundamental electrolyte properties and the cell performance is not consistent with what would be expected based only on the electrolyte ionic conductivity. Here, the recent progress and future perspectives on the correlation between the physicochemical properties of non-standard electrolyte solutions and their ability to improve the energy storage performances of lithium-based batteries are discussed.

Suggested Citation

  • Guinevere A. Giffin, 2022. "The role of concentration in electrolyte solutions for non-aqueous lithium-based batteries," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32794-z
    DOI: 10.1038/s41467-022-32794-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-32794-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-32794-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jing Xie & Yi-Chun Lu, 2020. "A retrospective on lithium-ion batteries," Nature Communications, Nature, vol. 11(1), pages 1-4, December.
    2. Jianhui Wang & Yuki Yamada & Keitaro Sodeyama & Ching Hua Chiang & Yoshitaka Tateyama & Atsuo Yamada, 2016. "Superconcentrated electrolytes for a high-voltage lithium-ion battery," Nature Communications, Nature, vol. 7(1), pages 1-9, November.
    3. Sebastian Pohlmann, 2022. "Metrics and methods for moving from research to innovation in energy storage," Nature Communications, Nature, vol. 13(1), pages 1-5, December.
    4. Liumin Suo & Yong-Sheng Hu & Hong Li & Michel Armand & Liquan Chen, 2013. "A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries," Nature Communications, Nature, vol. 4(1), pages 1-9, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. James T. Frith & Matthew J. Lacey & Ulderico Ulissi, 2023. "A non-academic perspective on the future of lithium-based batteries," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. Zhi Chang & Huijun Yang & Xingyu Zhu & Ping He & Haoshen Zhou, 2022. "A stable quasi-solid electrolyte improves the safe operation of highly efficient lithium-metal pouch cells in harsh environments," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. José Manuel Andújar & Francisca Segura & Jesús Rey & Francisco José Vivas, 2022. "Batteries and Hydrogen Storage: Technical Analysis and Commercial Revision to Select the Best Option," Energies, MDPI, vol. 15(17), pages 1-32, August.
    4. Yang, Yang & Xing, Kai & Yan, Minyue & Zhu, Xun & Ye, Dingding & Chen, Rong & Liao, Qiang, 2023. "A potential flexible fuel cell with dual-functional hydrogel based on multi-component crosslinked hybrid polyvinyl alcohol," Energy, Elsevier, vol. 265(C).
    5. Yan Zhao & Tianhong Zhou & Timur Ashirov & Mario El Kazzi & Claudia Cancellieri & Lars P. H. Jeurgens & Jang Wook Choi & Ali Coskun, 2022. "Fluorinated ether electrolyte with controlled solvation structure for high voltage lithium metal batteries," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Yuan, Lingling & Zhou, Qianwen & Li, Ting & Wang, Yikun & Liu, Zhengqing & Chong, Shaokun, 2022. "Promoting superior K-ion storage of Bi2S3 nanorod anode via graphene physicochemical protection and electrolyte stabilization effect," Applied Energy, Elsevier, vol. 322(C).
    7. Li, Yong & Yang, Jie & Song, Jian, 2016. "Structural model, size effect and nano-energy system design for more sustainable energy of solid state automotive battery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 685-697.
    8. Minglei Mao & Xiao Ji & Qiyu Wang & Zejing Lin & Meiying Li & Tao Liu & Chengliang Wang & Yong-Sheng Hu & Hong Li & Xuejie Huang & Liquan Chen & Liumin Suo, 2023. "Anion-enrichment interface enables high-voltage anode-free lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    9. Chen Xu & Chengjun Lei & Jinye Li & Xin He & Pengjie Jiang & Huijian Wang & Tingting Liu & Xiao Liang, 2023. "Unravelling rechargeable zinc-copper batteries by a chloride shuttle in a biphasic electrolyte," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    10. Junyeob Moon & Dong Ok Kim & Lieven Bekaert & Munsoo Song & Jinkyu Chung & Danwon Lee & Annick Hubin & Jongwoo Lim, 2022. "Non-fluorinated non-solvating cosolvent enabling superior performance of lithium metal negative electrode battery," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    11. Li, Yong & Yang, Jie & Song, Jian, 2016. "Nano-energy system coupling model and failure characterization of lithium ion battery electrode in electric energy vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1250-1261.
    12. Zhou, Yong & Dong, Guangzhong & Tan, Qianqian & Han, Xueyuan & Chen, Chunlin & Wei, Jingwen, 2023. "State of health estimation for lithium-ion batteries using geometric impedance spectrum features and recurrent Gaussian process regression," Energy, Elsevier, vol. 262(PB).
    13. Li, Xining & Ju, Lingling & Geng, Guangchao & Jiang, Quanyuan, 2023. "Data-driven state-of-health estimation for lithium-ion battery based on aging features," Energy, Elsevier, vol. 274(C).
    14. Shuoqing Zhang & Ruhong Li & Nan Hu & Tao Deng & Suting Weng & Zunchun Wu & Di Lu & Haikuo Zhang & Junbo Zhang & Xuefeng Wang & Lixin Chen & Liwu Fan & Xiulin Fan, 2022. "Tackling realistic Li+ flux for high-energy lithium metal batteries," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    15. Hyeokjin Kwon & Hyun-Ji Choi & Jung-kyu Jang & Jinhong Lee & Jinkwan Jung & Wonjun Lee & Youngil Roh & Jaewon Baek & Dong Jae Shin & Ju-Hyuk Lee & Nam-Soon Choi & Ying Shirley Meng & Hee-Tak Kim, 2023. "Weakly coordinated Li ion in single-ion-conductor-based composite enabling low electrolyte content Li-metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    16. Yao Ahoutou & Adrian Ilinca & Mohamad Issa, 2022. "Electrochemical Cells and Storage Technologies to Increase Renewable Energy Share in Cold Climate Conditions—A Critical Assessment," Energies, MDPI, vol. 15(4), pages 1-30, February.
    17. Yue Chen & Wenkai Wu & Sergio Gonzalez-Munoz & Leonardo Forcieri & Charlie Wells & Samuel P. Jarvis & Fangling Wu & Robert Young & Avishek Dey & Mark Isaacs & Mangayarkarasi Nagarathinam & Robert G. P, 2023. "Nanoarchitecture factors of solid electrolyte interphase formation via 3D nano-rheology microscopy and surface force-distance spectroscopy," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    18. Chao Zhu & Till Fuchs & Stefan A. L. Weber & Felix. H. Richter & Gunnar Glasser & Franjo Weber & Hans-Jürgen Butt & Jürgen Janek & Rüdiger Berger, 2023. "Understanding the evolution of lithium dendrites at Li6.25Al0.25La3Zr2O12 grain boundaries via operando microscopy techniques," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    19. Seongjae Ko & Xiao Han & Tatau Shimada & Norio Takenaka & Yuki Yamada & Atsuo Yamada, 2023. "Electrolyte design for lithium-ion batteries with a cobalt-free cathode and silicon oxide anode," Nature Sustainability, Nature, vol. 6(12), pages 1705-1714, December.
    20. Li, Yong & Yang, Jie & Song, Jian, 2015. "Microscale characterization of coupled degradation mechanism of graded materials in lithium batteries of electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1445-1461.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32794-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.