IDEAS home Printed from https://ideas.repec.org/a/nat/natsus/v6y2023i12d10.1038_s41893-023-01237-y.html
   My bibliography  Save this article

Electrolyte design for lithium-ion batteries with a cobalt-free cathode and silicon oxide anode

Author

Listed:
  • Seongjae Ko

    (The University of Tokyo)

  • Xiao Han

    (The University of Tokyo)

  • Tatau Shimada

    (The University of Tokyo)

  • Norio Takenaka

    (The University of Tokyo)

  • Yuki Yamada

    (The University of Tokyo)

  • Atsuo Yamada

    (The University of Tokyo
    Sungkyunkwan University)

Abstract

Lithium-ion batteries (LIBs) to power electric vehicles play an increasingly important role in the transition to a carbon neutral transportation system. However, at present the chemistry of LIBs requires, among other elements, cobalt (Co), which will probably become scarce over time in addition to posing supply chain risks related to its single source, human rights and mining practices. To address this problem, we construct a LIB pairing a Co-free cathode with a silicon suboxide (SiOx) anode that possesses a high cut-off voltage of 4.9 V and sustains unprecedented 1,000 cycles. Underlying this favourable electrode combination is a rational electrolyte design based on 3.4 M LiFSI/FEMC featuring a shifted potential, which serves to aid formation of robust passivation layers on the anode and promote electrolyte stability against both reductive and oxidative degradations. Our electrolyte formulation offers a pathway towards both sustainable and high-performing LIBs, while the concept could be applied to other electrochemical energy technologies.

Suggested Citation

  • Seongjae Ko & Xiao Han & Tatau Shimada & Norio Takenaka & Yuki Yamada & Atsuo Yamada, 2023. "Electrolyte design for lithium-ion batteries with a cobalt-free cathode and silicon oxide anode," Nature Sustainability, Nature, vol. 6(12), pages 1705-1714, December.
  • Handle: RePEc:nat:natsus:v:6:y:2023:i:12:d:10.1038_s41893-023-01237-y
    DOI: 10.1038/s41893-023-01237-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41893-023-01237-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41893-023-01237-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qingquan Huang & Jiangxuan Song & Yue Gao & Daiwei Wang & Shuai Liu & Shufu Peng & Courtney Usher & Alan Goliaszewski & Donghai Wang, 2019. "Supremely elastic gel polymer electrolyte enables a reliable electrode structure for silicon-based anodes," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    2. Yuki Yamada & Jianhui Wang & Seongjae Ko & Eriko Watanabe & Atsuo Yamada, 2019. "Advances and issues in developing salt-concentrated battery electrolytes," Nature Energy, Nature, vol. 4(4), pages 269-280, April.
    3. Jie Xiao & Qiuyan Li & Yujing Bi & Mei Cai & Bruce Dunn & Tobias Glossmann & Jun Liu & Tetsuya Osaka & Ryuta Sugiura & Bingbin Wu & Jihui Yang & Ji-Guang Zhang & M. Stanley Whittingham, 2020. "Understanding and applying coulombic efficiency in lithium metal batteries," Nature Energy, Nature, vol. 5(8), pages 561-568, August.
    4. Jianhui Wang & Yuki Yamada & Keitaro Sodeyama & Ching Hua Chiang & Yoshitaka Tateyama & Atsuo Yamada, 2016. "Superconcentrated electrolytes for a high-voltage lithium-ion battery," Nature Communications, Nature, vol. 7(1), pages 1-9, November.
    5. Seongjae Ko & Tomohiro Obukata & Tatau Shimada & Norio Takenaka & Masanobu Nakayama & Atsuo Yamada & Yuki Yamada, 2022. "Electrode potential influences the reversibility of lithium-metal anodes," Nature Energy, Nature, vol. 7(12), pages 1217-1224, December.
    6. Arumugam Manthiram, 2020. "A reflection on lithium-ion battery cathode chemistry," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    7. William E. Gent & Grace M. Busse & Kurt Z. House, 2022. "The predicted persistence of cobalt in lithium-ion batteries," Nature Energy, Nature, vol. 7(12), pages 1132-1143, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Norio Takenaka & Seongjae Ko & Atsushi Kitada & Atsuo Yamada, 2024. "Liquid Madelung energy accounts for the huge potential shift in electrochemical systems," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan Zhao & Tianhong Zhou & Timur Ashirov & Mario El Kazzi & Claudia Cancellieri & Lars P. H. Jeurgens & Jang Wook Choi & Ali Coskun, 2022. "Fluorinated ether electrolyte with controlled solvation structure for high voltage lithium metal batteries," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Pietro Iurilli & Luigi Luppi & Claudio Brivio, 2022. "Non-Invasive Detection of Lithium-Metal Battery Degradation," Energies, MDPI, vol. 15(19), pages 1-14, September.
    3. Zhi Chang & Huijun Yang & Xingyu Zhu & Ping He & Haoshen Zhou, 2022. "A stable quasi-solid electrolyte improves the safe operation of highly efficient lithium-metal pouch cells in harsh environments," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Zhuangzhuang Cui & Zhuangzhuang Jia & Digen Ruan & Qingshun Nian & Jiajia Fan & Shunqiang Chen & Zixu He & Dazhuang Wang & Jinyu Jiang & Jun Ma & Xing Ou & Shuhong Jiao & Qingsong Wang & Xiaodi Ren, 2024. "Molecular anchoring of free solvents for high-voltage and high-safety lithium metal batteries," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Hyeokjin Kwon & Hyun-Ji Choi & Jung-kyu Jang & Jinhong Lee & Jinkwan Jung & Wonjun Lee & Youngil Roh & Jaewon Baek & Dong Jae Shin & Ju-Hyuk Lee & Nam-Soon Choi & Ying Shirley Meng & Hee-Tak Kim, 2023. "Weakly coordinated Li ion in single-ion-conductor-based composite enabling low electrolyte content Li-metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Guinevere A. Giffin, 2022. "The role of concentration in electrolyte solutions for non-aqueous lithium-based batteries," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    7. Mengyao Tang & Shuai Dong & Jiawei Wang & Liwei Cheng & Qiaonan Zhu & Yanmei Li & Xiuyi Yang & Lin Guo & Hua Wang, 2023. "Low-temperature anode-free potassium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Hui Pan & Lei Wang & Yu Shi & Chuanchao Sheng & Sixie Yang & Ping He & Haoshen Zhou, 2024. "A solid-state lithium-ion battery with micron-sized silicon anode operating free from external pressure," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    9. Badreah Ali Al Jahdaly & Mohamed Farouk Elsadek & Badreldin Mohamed Ahmed & Mohamed Fawzy Farahat & Mohamed M. Taher & Ahmed M. Khalil, 2021. "Outstanding Graphene Quantum Dots from Carbon Source for Biomedical and Corrosion Inhibition Applications: A Review," Sustainability, MDPI, vol. 13(4), pages 1-33, February.
    10. Ke Chen & Pallab Barai & Ozgenur Kahvecioglu & Lijun Wu & Krzysztof Z. Pupek & Mingyuan Ge & Lu Ma & Steven N. Ehrlich & Hui Zhong & Yimei Zhu & Venkat Srinivasan & Jianming Bai & Feng Wang, 2024. "Cobalt-free composite-structured cathodes with lithium-stoichiometry control for sustainable lithium-ion batteries," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    11. Mi Tian & Yanchunxiao Qi & Eun-Suok Oh, 2021. "Application of a Polyacrylate Latex to a Lithium Iron Phosphate Cathode as a Binder Material," Energies, MDPI, vol. 14(7), pages 1-10, March.
    12. Weili Zhang & Yang Lu & Lei Wan & Pan Zhou & Yingchun Xia & Shuaishuai Yan & Xiaoxia Chen & Hangyu Zhou & Hao Dong & Kai Liu, 2022. "Engineering a passivating electric double layer for high performance lithium metal batteries," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    13. Jun Ma & Junxiong Wang & Kai Jia & Zheng Liang & Guanjun Ji & Haocheng Ji & Yanfei Zhu & Wen Chen & Hui-Ming Cheng & Guangmin Zhou, 2024. "Subtractive transformation of cathode materials in spent Li-ion batteries to a low-cobalt 5 V-class cathode material," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    14. Yang, Yang & Xing, Kai & Yan, Minyue & Zhu, Xun & Ye, Dingding & Chen, Rong & Liao, Qiang, 2023. "A potential flexible fuel cell with dual-functional hydrogel based on multi-component crosslinked hybrid polyvinyl alcohol," Energy, Elsevier, vol. 265(C).
    15. Hyeona Kim & Sung-Beom Kim & Deok-Hye Park & Kyung-Won Park, 2020. "Fluorine-Doped LiNi 0.8 Mn 0.1 Co 0.1 O 2 Cathode for High-Performance Lithium-Ion Batteries," Energies, MDPI, vol. 13(18), pages 1-10, September.
    16. Salimeh Gohari & Vaclav Knap & Mohammad Reza Yaftian, 2021. "Investigation on Cycling and Calendar Aging Processes of 3.4 Ah Lithium-Sulfur Pouch Cells," Sustainability, MDPI, vol. 13(16), pages 1-14, August.
    17. Kang, Jihyeon & Atwair, Mohamed & Nam, Inho & Lee, Chul-Jin, 2023. "Experimental and numerical investigation on effects of thickness of NCM622 cathode in Li-ion batteries for high energy and power density," Energy, Elsevier, vol. 263(PE).
    18. Chao-Yu Li & Ming Chen & Shuai Liu & Xinyao Lu & Jinhui Meng & Jiawei Yan & Héctor D. Abruña & Guang Feng & Tianquan Lian, 2022. "Unconventional interfacial water structure of highly concentrated aqueous electrolytes at negative electrode polarizations," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    19. Yan Zhao & Tianhong Zhou & Mounir Mensi & Jang Wook Choi & Ali Coskun, 2023. "Electrolyte engineering via ether solvent fluorination for developing stable non-aqueous lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    20. Xiaobo Zhu & Tobias U. Schülli & Xiaowei Yang & Tongen Lin & Yuxiang Hu & Ningyan Cheng & Hiroki Fujii & Kiyoshi Ozawa & Bruce Cowie & Qinfen Gu & Si Zhou & Zhenxiang Cheng & Yi Du & Lianzhou Wang, 2022. "Epitaxial growth of an atom-thin layer on a LiNi0.5Mn1.5O4 cathode for stable Li-ion battery cycling," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natsus:v:6:y:2023:i:12:d:10.1038_s41893-023-01237-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.