IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29971-5.html
   My bibliography  Save this article

Ambient-pressure hydrogenation of CO2 into long-chain olefins

Author

Listed:
  • Zhongling Li

    (University of Science and Technology of China)

  • Wenlong Wu

    (University of Science and Technology of China)

  • Menglin Wang

    (University of Science and Technology of China)

  • Yanan Wang

    (Songshan Lake Materials Laboratory
    Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences)

  • Xinlong Ma

    (University of Science and Technology of China)

  • Lei Luo

    (University of Science and Technology of China)

  • Yue Chen

    (University of Science and Technology of China)

  • Kaiyuan Fan

    (University of Science and Technology of China)

  • Yang Pan

    (University of Science and Technology of China)

  • Hongliang Li

    (University of Science and Technology of China)

  • Jie Zeng

    (University of Science and Technology of China)

Abstract

The conversion of CO2 by renewable power-generated hydrogen is a promising approach to a sustainable production of long-chain olefins (C4+=) which are currently produced from petroleum resources. The decentralized small-scale electrolysis for hydrogen generation requires the operation of CO2 hydrogenation in ambient-pressure units to match the manufacturing scales and flexible on-demand production. Herein, we report a Cu-Fe catalyst which is operated under ambient pressure with comparable C4+= selectivity (66.9%) to that of the state-of-the-art catalysts (66.8%) optimized under high pressure (35 bar). The catalyst is composed of copper, iron oxides, and iron carbides. Iron oxides enable reverse-water-gas-shift to produce CO. The synergy of carbide path over iron carbides and CO insertion path over interfacial sites between copper and iron carbides leads to efficient C-C coupling into C4+=. This work contributes to the development of small-scale low-pressure devices for CO2 hydrogenation compatible with sustainable hydrogen production.

Suggested Citation

  • Zhongling Li & Wenlong Wu & Menglin Wang & Yanan Wang & Xinlong Ma & Lei Luo & Yue Chen & Kaiyuan Fan & Yang Pan & Hongliang Li & Jie Zeng, 2022. "Ambient-pressure hydrogenation of CO2 into long-chain olefins," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29971-5
    DOI: 10.1038/s41467-022-29971-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29971-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29971-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Andreas Gollwitzer & Thomas Dietel & Winfried P. Kretschmer & Rhett Kempe, 2017. "A broadly tunable synthesis of linear α-olefins," Nature Communications, Nature, vol. 8(1), pages 1-6, December.
    2. Shuai Lyu & Li Wang & Zhe Li & Shukun Yin & Jie Chen & Yuhua Zhang & Jinlin Li & Ye Wang, 2020. "Stabilization of ε-iron carbide as high-temperature catalyst under realistic Fischer–Tropsch synthesis conditions," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    3. Jian Wei & Qingjie Ge & Ruwei Yao & Zhiyong Wen & Chuanyan Fang & Lisheng Guo & Hengyong Xu & Jian Sun, 2017. "Erratum: Directly converting CO2 into a gasoline fuel," Nature Communications, Nature, vol. 8(1), pages 1-1, December.
    4. Jian Wei & Qingjie Ge & Ruwei Yao & Zhiyong Wen & Chuanyan Fang & Lisheng Guo & Hengyong Xu & Jian Sun, 2017. "Directly converting CO2 into a gasoline fuel," Nature Communications, Nature, vol. 8(1), pages 1-9, August.
    5. Youming Ni & Zhiyang Chen & Yi Fu & Yong Liu & Wenliang Zhu & Zhongmin Liu, 2018. "Selective conversion of CO2 and H2 into aromatics," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
    6. Run-Ping Ye & Jie Ding & Weibo Gong & Morris D. Argyle & Qin Zhong & Yujun Wang & Christopher K. Russell & Zhenghe Xu & Armistead G. Russell & Qiaohong Li & Maohong Fan & Yuan-Gen Yao, 2019. "CO2 hydrogenation to high-value products via heterogeneous catalysis," Nature Communications, Nature, vol. 10(1), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guo Tian & Zhengwen Li & Chenxi Zhang & Xinyan Liu & Xiaoyu Fan & Kui Shen & Haibin Meng & Ning Wang & Hao Xiong & Mingyu Zhao & Xiaoyu Liang & Liqiang Luo & Lan Zhang & Binhang Yan & Xiao Chen & Hong, 2024. "Upgrading CO2 to sustainable aromatics via perovskite-mediated tandem catalysis," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Han Wang & Sheng Fan & Shujia Guo & Sen Wang & Zhangfeng Qin & Mei Dong & Huaqing Zhu & Weibin Fan & Jianguo Wang, 2023. "Selective conversion of CO2 to isobutane-enriched C4 alkanes over InZrOx-Beta composite catalyst," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiaming Liang & Jiangtao Liu & Lisheng Guo & Wenhang Wang & Chengwei Wang & Weizhe Gao & Xiaoyu Guo & Yingluo He & Guohui Yang & Shuhei Yasuda & Bing Liang & Noritatsu Tsubaki, 2024. "CO2 hydrogenation over Fe-Co bimetallic catalysts with tunable selectivity through a graphene fencing approach," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Şeker, Betül & Dizaji, Azam Khodadadi & Balci, Volkan & Uzun, Alper, 2021. "MCM-41-supported tungstophosphoric acid as an acid function for dimethyl ether synthesis from CO2 hydrogenation," Renewable Energy, Elsevier, vol. 171(C), pages 47-57.
    3. Adrian Ramirez & Xuan Gong & Mustafa Caglayan & Stefan-Adrian F. Nastase & Edy Abou-Hamad & Lieven Gevers & Luigi Cavallo & Abhishek Dutta Chowdhury & Jorge Gascon, 2021. "Selectivity descriptors for the direct hydrogenation of CO2 to hydrocarbons during zeolite-mediated bifunctional catalysis," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    4. Guo Tian & Xinyan Liu & Chenxi Zhang & Xiaoyu Fan & Hao Xiong & Xiao Chen & Zhengwen Li & Binhang Yan & Lan Zhang & Ning Wang & Hong-Jie Peng & Fei Wei, 2022. "Accelerating syngas-to-aromatic conversion via spontaneously monodispersed Fe in ZnCr2O4 spinel," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Guo Tian & Zhengwen Li & Chenxi Zhang & Xinyan Liu & Xiaoyu Fan & Kui Shen & Haibin Meng & Ning Wang & Hao Xiong & Mingyu Zhao & Xiaoyu Liang & Liqiang Luo & Lan Zhang & Binhang Yan & Xiao Chen & Hong, 2024. "Upgrading CO2 to sustainable aromatics via perovskite-mediated tandem catalysis," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Na Li & Bin Huang & Xue Dong & Jinsong Luo & Yi Wang & Hui Wang & Dengyun Miao & Yang Pan & Feng Jiao & Jianping Xiao & Zhenping Qu, 2022. "Bifunctional zeolites-silver catalyst enabled tandem oxidation of formaldehyde at low temperatures," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Hermesmann, M. & Grübel, K. & Scherotzki, L. & Müller, T.E., 2021. "Promising pathways: The geographic and energetic potential of power-to-x technologies based on regeneratively obtained hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    8. Changjiang Hu & Zhiwen Jiang & Qunyan Wu & Shuiyan Cao & Qiuhao Li & Chong Chen & Liyong Yuan & Yunlong Wang & Wenyun Yang & Jinbo Yang & Jing Peng & Weiqun Shi & Maolin Zhai & Mehran Mostafavi & Jun , 2023. "Selective CO2 reduction to CH3OH over atomic dual-metal sites embedded in a metal-organic framework with high-energy radiation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Sorrenti, Ilaria & Harild Rasmussen, Theis Bo & You, Shi & Wu, Qiuwei, 2022. "The role of power-to-X in hybrid renewable energy systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    10. Na Li & Yifeng Zhu & Feng Jiao & Xiulian Pan & Qike Jiang & Jun Cai & Yifan Li & Wei Tong & Changqi Xu & Shengcheng Qu & Bing Bai & Dengyun Miao & Zhi Liu & Xinhe Bao, 2022. "Steering the reaction pathway of syngas-to-light olefins with coordination unsaturated sites of ZnGaOx spinel," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    11. Takeshi Tsuji & Masao Sorai & Masashige Shiga & Shigenori Fujikawa & Toyoki Kunitake, 2021. "Geological storage of CO2–N2–O2 mixtures produced by membrane‐based direct air capture (DAC)," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(4), pages 610-618, August.
    12. TsingHai Wang & Cheng-Di Dong & Jui-Yen Lin & Chiu-Wen Chen & Jo-Shu Chang & Hyunook Kim & Chin-Pao Huang & Chang-Mao Hung, 2021. "Recent Advances in Carbon Dioxide Conversion: A Circular Bioeconomy Perspective," Sustainability, MDPI, vol. 13(12), pages 1-31, June.
    13. Xinyi Sun & Xiaowei Mu & Wei Zheng & Lei Wang & Sixie Yang & Chuanchao Sheng & Hui Pan & Wei Li & Cheng-Hui Li & Ping He & Haoshen Zhou, 2023. "Binuclear Cu complex catalysis enabling Li–CO2 battery with a high discharge voltage above 3.0 V," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    14. Ali Saleh Bairq, Zain & Gao, Hongxia & Huang, Yufei & Zhang, Haiyan & Liang, Zhiwu, 2019. "Enhancing CO2 desorption performance in rich MEA solution by addition of SO42−/ZrO2/SiO2 bifunctional catalyst," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    15. Si Woo Lee & Mauricio Lopez Luna & Nikolay Berdunov & Weiming Wan & Sebastian Kunze & Shamil Shaikhutdinov & Beatriz Roldan Cuenya, 2023. "Unraveling surface structures of gallium promoted transition metal catalysts in CO2 hydrogenation," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    16. Zahra Gholami & Fatemeh Gholami & Zdeněk Tišler & Martin Tomas & Mohammadtaghi Vakili, 2021. "A Review on Production of Light Olefins via Fluid Catalytic Cracking," Energies, MDPI, vol. 14(4), pages 1-36, February.
    17. Chen, Lingen & Zhang, Lei & Xia, Shaojun & Sun, Fengrui, 2018. "Entropy generation minimization for CO2 hydrogenation to light olefins," Energy, Elsevier, vol. 147(C), pages 187-196.
    18. Zhao, Jinyang & Yu, Yadong & Ren, Hongtao & Makowski, Marek & Granat, Janusz & Nahorski, Zbigniew & Ma, Tieju, 2022. "How the power-to-liquid technology can contribute to reaching carbon neutrality of the China's transportation sector?," Energy, Elsevier, vol. 261(PA).
    19. Runping Ye & Lixuan Ma & Jianing Mao & Xinyao Wang & Xiaoling Hong & Alessandro Gallo & Yanfu Ma & Wenhao Luo & Baojun Wang & Riguang Zhang & Melis Seher Duyar & Zheng Jiang & Jian Liu, 2024. "A Ce-CuZn catalyst with abundant Cu/Zn-OV-Ce active sites for CO2 hydrogenation to methanol," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    20. Moioli, Emanuele & Schildhauer, Tilman, 2022. "Negative CO2 emissions from flexible biofuel synthesis: Concepts, potentials, technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29971-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.