IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29709-3.html
   My bibliography  Save this article

Methane emissions from US low production oil and natural gas well sites

Author

Listed:
  • Mark Omara

    (Environmental Defense Fund)

  • Daniel Zavala-Araiza

    (Environmental Defense Fund
    Utrecht University)

  • David R. Lyon

    (Environmental Defense Fund)

  • Benjamin Hmiel

    (Environmental Defense Fund)

  • Katherine A. Roberts

    (Environmental Defense Fund)

  • Steven P. Hamburg

    (Environmental Defense Fund)

Abstract

Eighty percent of US oil and natural gas (O&G) production sites are low production well sites, with average site-level production ≤15 barrels of oil equivalent per day and producing only 6% of the nation’s O&G output in 2019. Here, we integrate national site-level O&G production data and previously reported site-level CH4 measurement data (n = 240) and find that low production well sites are a disproportionately large source of US O&G well site CH4 emissions, emitting more than 4 (95% confidence interval: 3—6) teragrams, 50% more than the total CH4 emissions from the Permian Basin, one of the world’s largest O&G producing regions. We estimate low production well sites represent roughly half (37—75%) of all O&G well site CH4 emissions, and a production-normalized CH4 loss rate of more than 10%—a factor of 6—12 times higher than the mean CH4 loss rate of 1.5% for all O&G well sites in the US. Our work suggests that achieving significant reductions in O&G CH4 emissions will require mitigation of emissions from low production well sites.

Suggested Citation

  • Mark Omara & Daniel Zavala-Araiza & David R. Lyon & Benjamin Hmiel & Katherine A. Roberts & Steven P. Hamburg, 2022. "Methane emissions from US low production oil and natural gas well sites," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29709-3
    DOI: 10.1038/s41467-022-29709-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29709-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29709-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Daniel Zavala-Araiza & Ramón A Alvarez & David R. Lyon & David T. Allen & Anthony J. Marchese & Daniel J. Zimmerle & Steven P. Hamburg, 2017. "Super-emitters in natural gas infrastructure are caused by abnormal process conditions," Nature Communications, Nature, vol. 8(1), pages 1-10, April.
    2. Riley M. Duren & Andrew K. Thorpe & Kelsey T. Foster & Talha Rafiq & Francesca M. Hopkins & Vineet Yadav & Brian D. Bue & David R. Thompson & Stephen Conley & Nadia K. Colombi & Christian Frankenberg , 2019. "California’s methane super-emitters," Nature, Nature, vol. 575(7781), pages 180-184, November.
    3. Jeffrey S. Rutherford & Evan D. Sherwin & Arvind P. Ravikumar & Garvin A. Heath & Jacob Englander & Daniel Cooley & David Lyon & Mark Omara & Quinn Langfitt & Adam R. Brandt, 2021. "Closing the methane gap in US oil and natural gas production emissions inventories," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Esparza, Ángel E. & Rowan, Gillian & Newhook, Ashley & Deglint, Hanford J. & Garrison, Billy & Orth-Lashley, Bryn & Girard, Marianne & Shaw, Warren, 2023. "Analysis of a tiered top-down approach using satellite and aircraft platforms to monitor oil and gas facilities in the Permian basin," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    2. Kemfert, Claudia & Präger, Fabian & Braunger, Isabell & Hoffart, Franziska M. & Brauers, Hanna, 2022. "The expansion of natural gas infrastructure puts energy transitions at risk," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 7, pages 582-587.
    3. Malak Anshassi & Timothy G. Townsend, 2023. "The hidden economic and environmental costs of eliminating kerb-side recycling," Nature Sustainability, Nature, vol. 6(8), pages 919-928, August.
    4. Shuo Sun & Linwei Ma & Zheng Li, 2021. "Methane Emission Estimation of Oil and Gas Sector: A Review of Measurement Technologies, Data Analysis Methods and Uncertainty Estimation," Sustainability, MDPI, vol. 13(24), pages 1-29, December.
    5. John E. T. Bistline & David T. Young, 2022. "The role of natural gas in reaching net-zero emissions in the electric sector," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Justin M. Bracci & Evan D. Sherwin & Naomi L. Boness & Adam R. Brandt, 2023. "A cost comparison of various hourly-reliable and net-zero hydrogen production pathways in the United States," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    7. Titchener, James & Millington-Smith, Doug & Goldsack, Chris & Harrison, George & Dunning, Alexander & Ai, Xiao & Reed, Murray, 2022. "Single photon Lidar gas imagers for practical and widespread continuous methane monitoring," Applied Energy, Elsevier, vol. 306(PB).
    8. Rashid, Kashif & Speck, Andrew & Osedach, Timothy P. & Perroni, Dominic V. & Pomerantz, Andrew E., 2020. "Optimized inspection of upstream oil and gas methane emissions using airborne LiDAR surveillance," Applied Energy, Elsevier, vol. 275(C).
    9. James J. Winebrake & James J. Corbett & Fatima Umar & Daniel Yuska, 2019. "Pollution Tradeoffs for Conventional and Natural Gas-Based Marine Fuels," Sustainability, MDPI, vol. 11(8), pages 1-19, April.
    10. Yongxue Liu & Yuling Pu & Xueying Hu & Yanzhu Dong & Wei Wu & Chuanmin Hu & Yuzhong Zhang & Songhan Wang, 2023. "Global declines of offshore gas flaring inadequate to meet the 2030 goal," Nature Sustainability, Nature, vol. 6(9), pages 1095-1102, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29709-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.