IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i24p13895-d703524.html
   My bibliography  Save this article

Methane Emission Estimation of Oil and Gas Sector: A Review of Measurement Technologies, Data Analysis Methods and Uncertainty Estimation

Author

Listed:
  • Shuo Sun

    (State Key Laboratory of Power Systems, Department of Energy and Power Engineering, Tsinghua-BP Clean Energy Research and Education Center, Tsinghua University, Beijing 100084, China)

  • Linwei Ma

    (State Key Laboratory of Power Systems, Department of Energy and Power Engineering, Tsinghua-BP Clean Energy Research and Education Center, Tsinghua University, Beijing 100084, China)

  • Zheng Li

    (State Key Laboratory of Power Systems, Department of Energy and Power Engineering, Tsinghua-BP Clean Energy Research and Education Center, Tsinghua University, Beijing 100084, China)

Abstract

The emission estimation of the oil and gas sector, which involves field test measurements, data analysis, and uncertainty estimation, precedes effective emission mitigation actions. A systematic comparison and summary of these technologies and methods are necessary to instruct the technology selection and for uncertainty improvement, which is not found in existing literature. In this paper, we present a review of existing measuring technologies, matching data analysis methods, and newly developed probabilistic tools for uncertainty estimation and try to depict the process for emission estimation. Through a review, we find that objectives have a determinative effect on the selection of measurement technologies, matching data analysis methods, and uncertainty estimation methods. And from a systematic perspective, optical instruments may have greatly improved measurement accuracy and range, yet data analysis methods might be the main contributor of estimation uncertainty. We suggest that future studies on oil and gas methane emissions should focus on the analysis methods to narrow the uncertainty bond, and more research on uncertainty generation might also be required.

Suggested Citation

  • Shuo Sun & Linwei Ma & Zheng Li, 2021. "Methane Emission Estimation of Oil and Gas Sector: A Review of Measurement Technologies, Data Analysis Methods and Uncertainty Estimation," Sustainability, MDPI, vol. 13(24), pages 1-29, December.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:24:p:13895-:d:703524
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/24/13895/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/24/13895/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. P. Bousquet & P. Ciais & J. B. Miller & E. J. Dlugokencky & D. A. Hauglustaine & C. Prigent & G. R. Van der Werf & P. Peylin & E.-G. Brunke & C. Carouge & R. L. Langenfelds & J. Lathière & F. Papa & M, 2006. "Contribution of anthropogenic and natural sources to atmospheric methane variability," Nature, Nature, vol. 443(7110), pages 439-443, September.
    2. Daniel Zavala-Araiza & Ramón A Alvarez & David R. Lyon & David T. Allen & Anthony J. Marchese & Daniel J. Zimmerle & Steven P. Hamburg, 2017. "Super-emitters in natural gas infrastructure are caused by abnormal process conditions," Nature Communications, Nature, vol. 8(1), pages 1-10, April.
    3. Elkhan Richard Sadik-Zada & Wilhelm Loewenstein, 2020. "Drivers of CO 2 -Emissions in Fossil Fuel Abundant Settings: (Pooled) Mean Group and Nonparametric Panel Analyses," Energies, MDPI, vol. 13(15), pages 1-24, August.
    4. Sadik-Zada, Elkhan Richard & Gatto, Andrea, 2021. "The puzzle of greenhouse gas footprints of oil abundance," Socio-Economic Planning Sciences, Elsevier, vol. 75(C).
    5. Rashid, Kashif & Speck, Andrew & Osedach, Timothy P. & Perroni, Dominic V. & Pomerantz, Andrew E., 2020. "Optimized inspection of upstream oil and gas methane emissions using airborne LiDAR surveillance," Applied Energy, Elsevier, vol. 275(C).
    6. Elkhan Richard Sadik-Zada & Wilhelm Loewenstein & Yadulla Hasanli, 2021. "Production linkages and dynamic fiscal employment effects of the extractive industries: input-output and nonlinear ARDL analyses of Azerbaijani economy," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 34(1), pages 3-18, April.
    7. Wang, Jingfan & Tchapmi, Lyne P. & Ravikumar, Arvind P. & McGuire, Mike & Bell, Clay S. & Zimmerle, Daniel & Savarese, Silvio & Brandt, Adam R., 2020. "Machine vision for natural gas methane emissions detection using an infrared camera," Applied Energy, Elsevier, vol. 257(C).
    8. Yusuf, Rafiu O. & Noor, Zainura Z. & Abba, Ahmad H. & Hassan, Mohd Ariffin Abu & Din, Mohd Fadhil Mohd, 2012. "Methane emission by sectors: A comprehensive review of emission sources and mitigation methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5059-5070.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Azad Haider & Muhammad Iftikhar ul Husnain & Wimal Rankaduwa & Farzana Shaheen, 2021. "Nexus between Nitrous Oxide Emissions and Agricultural Land Use in Agrarian Economy: An ARDL Bounds Testing Approach," Sustainability, MDPI, vol. 13(5), pages 1-19, March.
    2. Samereh Pourmoradian & Ali Vandshoari & Davoud Omarzadeh & Ayyoob Sharifi & Naser Sanobuar & Seyyed Samad Hosseini, 2021. "An Integrated Approach to Assess Potential and Sustainability of Handmade Carpet Production in Different Areas of the East Azerbaijan Province of Iran," Sustainability, MDPI, vol. 13(4), pages 1-21, February.
    3. Asongu, Simplice & Odhiambo, Nicholas, 2020. "The role of governance in quality education in sub-Saharan Africa," MPRA Paper 107497, University Library of Munich, Germany.
    4. Sadik-Zada, Elkhan Richard & Gatto, Andrea, 2023. "Civic engagement and energy transition in the Nordic-Baltic Sea Region: Parametric and nonparametric inquiries," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    5. Muhammad Asyraf Azni & Rasyikah Md Khalid, 2021. "Hydrogen Fuel Cell Legal Framework in the United States, Germany, and South Korea—A Model for a Regulation in Malaysia," Sustainability, MDPI, vol. 13(4), pages 1-14, February.
    6. Elkhan Richard Sadik-Zada & Wilhelm Loewenstein, 2020. "Drivers of CO 2 -Emissions in Fossil Fuel Abundant Settings: (Pooled) Mean Group and Nonparametric Panel Analyses," Energies, MDPI, vol. 13(15), pages 1-24, August.
    7. Sofia Berdysheva & Svetlana Ikonnikova, 2021. "The Energy Transition and Shifts in Fossil Fuel Use: The Study of International Energy Trade and Energy Security Dynamics," Energies, MDPI, vol. 14(17), pages 1-26, August.
    8. Zhang, Bo & Chen, G.Q., 2014. "Methane emissions in China 2007," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 886-902.
    9. Die Li & Sumin Hu, 2021. "How Does Technological Innovation Mediate the Relationship between Environmental Regulation and High-Quality Economic Development? Empirical Evidence from China," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
    10. Kristoffer W. Lie & Trym A. Synnevåg & Jacob J. Lamb & Kristian M. Lien, 2021. "The Carbon Footprint of Electrified City Buses: A Case Study in Trondheim, Norway," Energies, MDPI, vol. 14(3), pages 1-21, February.
    11. Yang Ding & Qing Yang & Lanjuan Cao, 2021. "Examining the Impacts of Economic, Social, and Environmental Factors on the Relationship between Urbanization and CO 2 Emissions," Energies, MDPI, vol. 14(21), pages 1-23, November.
    12. Katarzyna Szymczyk & Dilek Şahin & Haşim Bağcı & Ceyda Yerdelen Kaygın, 2021. "The Effect of Energy Usage, Economic Growth, and Financial Development on CO 2 Emission Management: An Analysis of OECD Countries with a High Environmental Performance Index," Energies, MDPI, vol. 14(15), pages 1-21, August.
    13. Javier Arnaut & Johanna Lidman, 2021. "Environmental Sustainability and Economic Growth in Greenland: Testing the Environmental Kuznets Curve," Sustainability, MDPI, vol. 13(3), pages 1-13, January.
    14. Titchener, James & Millington-Smith, Doug & Goldsack, Chris & Harrison, George & Dunning, Alexander & Ai, Xiao & Reed, Murray, 2022. "Single photon Lidar gas imagers for practical and widespread continuous methane monitoring," Applied Energy, Elsevier, vol. 306(PB).
    15. Mohamed Ouédraogo & Daiyan Peng & Xi Chen & Shujahat Haider Hashmi & Mamoudou Ibrahima Sall, 2021. "Dynamic Effect of Oil Resources on Environmental Quality: Testing the Environmental Kuznets Curve Hypothesis for Selected African Countries," Sustainability, MDPI, vol. 13(7), pages 1-23, March.
    16. Jianguo Du & Jing Zhang & Xingwei Li, 2020. "What Is the Mechanism of Resource Dependence and High-Quality Economic Development? An Empirical Test from China," Sustainability, MDPI, vol. 12(19), pages 1-17, October.
    17. Samuel Abalansa & Badr El Mahrad & John Icely & Alice Newton, 2021. "Electronic Waste, an Environmental Problem Exported to Developing Countries: The GOOD, the BAD and the UGLY," Sustainability, MDPI, vol. 13(9), pages 1-24, May.
    18. Sadik-Zada, Elkhan Richard & Gatto, Andrea & Scharfenstein, Manuel, 2023. "Sustainable management of lithium and green hydrogen and long-run perspectives of electromobility," Technological Forecasting and Social Change, Elsevier, vol. 186(PA).
    19. Niftiyev, Ibrahim, 2022. "Exclusive Linear Modeling Approach to the Natural Resource Curse in the Azerbaijani Economy: Examples of Stepwise Regression," EconStor Preprints 266036, ZBW - Leibniz Information Centre for Economics.
    20. Zhang, Bo & Chen, G.Q. & Li, J.S. & Tao, L., 2014. "Methane emissions of energy activities in China 1980–2007," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 11-21.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:24:p:13895-:d:703524. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.