IDEAS home Printed from https://ideas.repec.org/a/ksp/journ4/v4y2017i1p132-138.html
   My bibliography  Save this article

Application of Fuzzy Multi-Criteria Decision Making Methods on Six Sigma Projects Selection

Author

Listed:
  • Engin ÇAKIR

    (Department of Business Administration, Adnan Menderes University, Aydýn, Turkey.)

Abstract

Six sigma method widely applied in production and service businesses is known as a project-oriented method. In six sigma method, selection of the prior project among others can be considered as a multi -criteria decision making problem. The conducted literature review has revealed that there is a large number of methods to select six sigma projects. It is more appropriate to use fuzzy multi-criteria decision making methods in project selection since evaluation criteria of six sigma projects include uncertainties. The aim of this study is to select the most appropriate project as a result of evaluating the projects by Fuzzy VIKOR, Fuzzy TOPSIS and Fuzzy COPRAS as methods of fuzzy multicriteria decision-making and integrating the ranking scores obtained from each method by Copeland method. The proposed method has been implemented in a large scale production company, operating in Aydýn ASTÝM Organized Industrial Zone.

Suggested Citation

  • Engin ÇAKIR, 2017. "Application of Fuzzy Multi-Criteria Decision Making Methods on Six Sigma Projects Selection," Journal of Social and Administrative Sciences, KSP Journals, vol. 4(1), pages 132-138, March.
  • Handle: RePEc:ksp:journ4:v:4:y:2017:i:1:p:132-138
    as

    Download full text from publisher

    File URL: http://www.kspjournals.org/index.php/JSAS/article/download/1263/1264
    Download Restriction: no

    File URL: http://www.kspjournals.org/index.php/JSAS/article/view/1263
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sheu, Jiuh-Biing, 2004. "A hybrid fuzzy-based approach for identifying global logistics strategies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 40(1), pages 39-61, January.
    2. R. E. Bellman & L. A. Zadeh, 1970. "Decision-Making in a Fuzzy Environment," Management Science, INFORMS, vol. 17(4), pages 141-164, December.
    3. Opricovic, Serafim & Tzeng, Gwo-Hshiung, 2004. "Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS," European Journal of Operational Research, Elsevier, vol. 156(2), pages 445-455, July.
    4. Chang, Da-Yong, 1996. "Applications of the extent analysis method on fuzzy AHP," European Journal of Operational Research, Elsevier, vol. 95(3), pages 649-655, December.
    5. Thomas L. Saaty & Luis G. Vargas, 2012. "Models, Methods, Concepts & Applications of the Analytic Hierarchy Process," International Series in Operations Research and Management Science, Springer, edition 2, number 978-1-4614-3597-6, December.
    6. Simon Dresner & Nigel Gilbert, 1999. "Decision-Making Processes For Projects Requiring Environmental Impact Assessment: Case Studies In Six European Countries," Journal of Environmental Assessment Policy and Management (JEAPM), World Scientific Publishing Co. Pte. Ltd., vol. 1(01), pages 105-130.
    7. Christian Klamler, 2003. "A comparison of the Dodgson method and the Copeland rule," Economics Bulletin, AccessEcon, vol. 4(8), pages 1-7.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amir Hossein Salimi & Amir Noori & Hossein Bonakdari & Jafar Masoompour Samakosh & Ehsan Sharifi & Mohammadreza Hassanvand & Baharam Gharabaghi & Mehdi Agharazi, 2020. "Exploring the Role of Advertising Types on Improving the Water Consumption Behavior: An Application of Integrated Fuzzy AHP and Fuzzy VIKOR Method," Sustainability, MDPI, vol. 12(3), pages 1-33, February.
    2. Chen, Lisa Y. & Wang, Tien-Chin, 2009. "Optimizing partners' choice in IS/IT outsourcing projects: The strategic decision of fuzzy VIKOR," International Journal of Production Economics, Elsevier, vol. 120(1), pages 233-242, July.
    3. Wenyao Niu & Yuan Rong & Liying Yu & Lu Huang, 2022. "A Novel Hybrid Group Decision Making Approach Based on EDAS and Regret Theory under a Fermatean Cubic Fuzzy Environment," Mathematics, MDPI, vol. 10(17), pages 1-30, August.
    4. Sajid Ali & Sang-Moon Lee & Choon-Man Jang, 2017. "Determination of the Most Optimal On-Shore Wind Farm Site Location Using a GIS-MCDM Methodology: Evaluating the Case of South Korea," Energies, MDPI, vol. 10(12), pages 1-22, December.
    5. Lupo, Toni, 2015. "Fuzzy ServPerf model combined with ELECTRE III to comparatively evaluate service quality of international airports in Sicily," Journal of Air Transport Management, Elsevier, vol. 42(C), pages 249-259.
    6. Manuel Casal-Guisande & Alberto Comesaña-Campos & Alejandro Pereira & José-Benito Bouza-Rodríguez & Jorge Cerqueiro-Pequeño, 2022. "A Decision-Making Methodology Based on Expert Systems Applied to Machining Tools Condition Monitoring," Mathematics, MDPI, vol. 10(3), pages 1-30, February.
    7. Adiprasetyo, Teguh & Suhartoyo, Hery & Firdaus, Arief, 2017. "Developing Strategy for Advancing Organic Agriculture as Sustainable Agricultural Practice," INA-Rxiv wb37h, Center for Open Science.
    8. Aleksandar Aleksić & Danijela Tadić, 2023. "Industrial and Management Applications of Type-2 Multi-Attribute Decision-Making Techniques Extended with Type-2 Fuzzy Sets from 2013 to 2022," Mathematics, MDPI, vol. 11(10), pages 1-24, May.
    9. Olcer, A. I. & Odabasi, A. Y., 2005. "A new fuzzy multiple attributive group decision making methodology and its application to propulsion/manoeuvring system selection problem," European Journal of Operational Research, Elsevier, vol. 166(1), pages 93-114, October.
    10. Mohamed Hanine & Omar Boutkhoum & Abderrafie El Maknissi & Abdessadek Tikniouine & Tarik Agouti, 2016. "Decision making under uncertainty using PEES–fuzzy AHP–fuzzy TOPSIS methodology for landfill location selection," Environment Systems and Decisions, Springer, vol. 36(4), pages 351-367, December.
    11. Ali Alibeigi & Adeleh Asemi & Abu Bakar Munir & Mohd Sapiyan Baba, 2021. "Evaluating ASEAN E-commerce Laws Using Fuzzy Multi-Criteria Decision Making," Advances in Decision Sciences, Asia University, Taiwan, vol. 25(2), pages 105-157, June.
    12. Concetta Manuela La Fata & Toni Lupo & Tommaso Piazza, 2019. "Service quality benchmarking via a novel approach based on fuzzy ELECTRE III and IPA: an empirical case involving the Italian public healthcare context," Health Care Management Science, Springer, vol. 22(1), pages 106-120, March.
    13. Liu Fang & Peng Yanan & Zhang Weiguo & Pedrycz Witold, 2017. "On Consistency in AHP and Fuzzy AHP," Journal of Systems Science and Information, De Gruyter, vol. 5(2), pages 128-147, April.
    14. Klaus D. Goepel, 2019. "Comparison of Judgment Scales of the Analytical Hierarchy Process — A New Approach," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(02), pages 445-463, March.
    15. Cho, Sangmin & Kim, Jinsoo & Heo, Eunnyeong, 2015. "Application of fuzzy analytic hierarchy process to select the optimal heating facility for Korean horticulture and stockbreeding sectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1075-1083.
    16. Aliasghar Aliakbarzadeh & Akbar Alem Tabriz, 2014. "Performance Evaluation and Ranking the Branches of Bank using FAHP and TOPSIS Case study: Tose Asr Shomal Interest-free Loan Fund," International Journal of Academic Research in Business and Social Sciences, Human Resource Management Academic Research Society, International Journal of Academic Research in Business and Social Sciences, vol. 4(12), pages 199-217, December.
    17. Syed Hammad Mian & Khaja Moiduddin & Hisham Alkhalefah & Mustufa Haider Abidi & Faraz Ahmed & Faraz Hussain Hashmi, 2023. "Mechanisms for Choosing PV Locations That Allow for the Most Sustainable Usage of Solar Energy," Sustainability, MDPI, vol. 15(4), pages 1-24, February.
    18. Pandey, Mukesh Mohan, 2016. "Evaluating the service quality of airports in Thailand using fuzzy multi-criteria decision making method," Journal of Air Transport Management, Elsevier, vol. 57(C), pages 241-249.
    19. Ruxing Gao & Hyo On Nam & Won Il Ko & Hong Jang, 2017. "National Options for a Sustainable Nuclear Energy System: MCDM Evaluation Using an Improved Integrated Weighting Approach," Energies, MDPI, vol. 10(12), pages 1-24, December.
    20. Wątróbski, Jarosław & Jankowski, Jarosław & Ziemba, Paweł & Karczmarczyk, Artur & Zioło, Magdalena, 2019. "Generalised framework for multi-criteria method selection," Omega, Elsevier, vol. 86(C), pages 107-124.

    More about this item

    Keywords

    Six Sigma Projects; Fuzzy VIKOR; Fuzzy TOPSIS; Fuzzy COPRAS; Fuzzy AHP; Copeland Method.;
    All these keywords.

    JEL classification:

    • M11 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Business Administration - - - Production Management
    • C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory
    • L20 - Industrial Organization - - Firm Objectives, Organization, and Behavior - - - General
    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • D70 - Microeconomics - - Analysis of Collective Decision-Making - - - General
    • O22 - Economic Development, Innovation, Technological Change, and Growth - - Development Planning and Policy - - - Project Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ksp:journ4:v:4:y:2017:i:1:p:132-138. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bilal KARGI (email available below). General contact details of provider: http://www.kspjournals.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.