IDEAS home Printed from https://ideas.repec.org/a/kap/netspa/v24y2024i1d10.1007_s11067-023-09611-1.html
   My bibliography  Save this article

Selective Backhauls in Truck Transport with Risk Mitigation: Large Belgian Retailer Case Study

Author

Listed:
  • Kenneth Stoop

    (Ghent University - imec)

  • Mario Pickavet

    (Ghent University - imec)

  • Didier Colle

    (Ghent University - imec)

  • Pieter Audenaert

    (Ghent University - imec)

Abstract

In this work the problem of selective backhauls in the transport of fresh products is investigated for the case of a large Belgian grocery retailer. Explicit measures for estimating the risk involved in certain route - vendor backhauling combinations, which emerge from the uncertainties involved in over road transport and unforeseen waiting and loading/unloading times at the depot or stores, are constructed. Two different models are proposed: an integer linear program with chance constraints, and a stochastic linear program. The chance constraints in the first model are based on the intuition and experience of the people in planning and dispatching. In the second model, the balance between risk and potential profit is directly incorporated into the objective function. For this study, the largest of all transport companies working for the studied retailer is considered for reference and data. The stochastic linear program proved to be superior. Moreover, we demonstrate that, even if only considering a small part of the fleet, the potential profits and reduction in empty kilometers due to the selected backhauls are considerable.

Suggested Citation

  • Kenneth Stoop & Mario Pickavet & Didier Colle & Pieter Audenaert, 2024. "Selective Backhauls in Truck Transport with Risk Mitigation: Large Belgian Retailer Case Study," Networks and Spatial Economics, Springer, vol. 24(1), pages 99-130, March.
  • Handle: RePEc:kap:netspa:v:24:y:2024:i:1:d:10.1007_s11067-023-09611-1
    DOI: 10.1007/s11067-023-09611-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11067-023-09611-1
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11067-023-09611-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R Baldacci & E Bartolini & G Laporte, 2010. "Some applications of the generalized vehicle routing problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(7), pages 1072-1077, July.
    2. Candace Arai Yano & Thomas J. Chan & Lori Kaplan Richter & Theodore Cutler & Katta G. Murty & David McGettigan, 1987. "Vehicle Routing at Quality Stores," Interfaces, INFORMS, vol. 17(2), pages 52-63, April.
    3. Amorim, P. & Günther, H.-O. & Almada-Lobo, B., 2012. "Multi-objective integrated production and distribution planning of perishable products," International Journal of Production Economics, Elsevier, vol. 138(1), pages 89-101.
    4. Jorge Oyola & Halvard Arntzen & David L. Woodruff, 2017. "The stochastic vehicle routing problem, a literature review, Part II: solution methods," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(4), pages 349-388, December.
    5. Zhang, Dali & Li, Dong & Sun, Hailin & Hou, Liwen, 2021. "A vehicle routing problem with distribution uncertainty in deadlines," European Journal of Operational Research, Elsevier, vol. 292(1), pages 311-326.
    6. Yu, Chian-Son & Li, Han-Lin, 2000. "A robust optimization model for stochastic logistic problems," International Journal of Production Economics, Elsevier, vol. 64(1-3), pages 385-397, March.
    7. Li, Hongqi & Wang, Haotian & Chen, Jun & Bai, Ming, 2021. "Two-echelon vehicle routing problem with satellite bi-synchronization," European Journal of Operational Research, Elsevier, vol. 288(3), pages 775-793.
    8. Marques, Alexandra & Soares, Ricardo & Santos, Maria João & Amorim, Pedro, 2020. "Integrated planning of inbound and outbound logistics with a Rich Vehicle Routing Problem with backhauls," Omega, Elsevier, vol. 92(C).
    9. Junlong Zhang & William Lam & Bi Chen, 2013. "A Stochastic Vehicle Routing Problem with Travel Time Uncertainty: Trade-Off Between Cost and Customer Service," Networks and Spatial Economics, Springer, vol. 13(4), pages 471-496, December.
    10. Jorge Oyola & Halvard Arntzen & David L. Woodruff, 2018. "The stochastic vehicle routing problem, a literature review, part I: models," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 7(3), pages 193-221, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Lele & Ding, Pengyuan & Thompson, Russell G., 2023. "A stochastic formulation of the two-echelon vehicle routing and loading bay reservation problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
    2. Federica Bomboi & Christoph Buchheim & Jonas Pruente, 2022. "On the stochastic vehicle routing problem with time windows, correlated travel times, and time dependency," 4OR, Springer, vol. 20(2), pages 217-239, June.
    3. Alexandre M. Florio & Richard F. Hartl & Stefan Minner & Juan-José Salazar-González, 2021. "A Branch-and-Price Algorithm for the Vehicle Routing Problem with Stochastic Demands and Probabilistic Duration Constraints," Transportation Science, INFORMS, vol. 55(1), pages 122-138, 1-2.
    4. Li, Siqiao & Zhu, Xiaoning & Shang, Pan & Li, Tianqi & Liu, Wenqian, 2023. "Optimizing a shared freight and passenger high-speed railway system: A multi-commodity flow formulation with Benders decomposition solution approach," Transportation Research Part B: Methodological, Elsevier, vol. 172(C), pages 1-31.
    5. Maria João Santos & Pedro Amorim & Alexandra Marques & Ana Carvalho & Ana Póvoa, 2020. "The vehicle routing problem with backhauls towards a sustainability perspective: a review," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 358-401, July.
    6. Florio, Alexandre M. & Gendreau, Michel & Hartl, Richard F. & Minner, Stefan & Vidal, Thibaut, 2023. "Recent advances in vehicle routing with stochastic demands: Bayesian learning for correlated demands and elementary branch-price-and-cut," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1081-1093.
    7. Marques, Alexandra & Soares, Ricardo & Santos, Maria João & Amorim, Pedro, 2020. "Integrated planning of inbound and outbound logistics with a Rich Vehicle Routing Problem with backhauls," Omega, Elsevier, vol. 92(C).
    8. Sluijk, Natasja & Florio, Alexandre M. & Kinable, Joris & Dellaert, Nico & Van Woensel, Tom, 2023. "Two-echelon vehicle routing problems: A literature review," European Journal of Operational Research, Elsevier, vol. 304(3), pages 865-886.
    9. Alexandre M. Florio & Nabil Absi & Dominique Feillet, 2021. "Routing Electric Vehicles on Congested Street Networks," Transportation Science, INFORMS, vol. 55(1), pages 238-256, 1-2.
    10. Luca Bertazzi & Nicola Secomandi, 2020. "Technical Note—Worst-Case Benefit of Restocking for the Vehicle Routing Problem with Stochastic Demands," Operations Research, INFORMS, vol. 68(3), pages 671-675, May.
    11. Alvo, Matías & Angulo, Gustavo & Klapp, Mathias A., 2021. "An exact solution approach for an electric bus dispatch problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    12. Nadia Giuffrida & Jenny Fajardo-Calderin & Antonio D. Masegosa & Frank Werner & Margarete Steudter & Francesco Pilla, 2022. "Optimization and Machine Learning Applied to Last-Mile Logistics: A Review," Sustainability, MDPI, vol. 14(9), pages 1-16, April.
    13. Pedro Munari & Alfredo Moreno & Jonathan De La Vega & Douglas Alem & Jacek Gondzio & Reinaldo Morabito, 2019. "The Robust Vehicle Routing Problem with Time Windows: Compact Formulation and Branch-Price-and-Cut Method," Transportation Science, INFORMS, vol. 53(4), pages 1043-1066, July.
    14. Banerjee, Dipayan & Erera, Alan L. & Stroh, Alexander M. & Toriello, Alejandro, 2023. "Who has access to e-commerce and when? Time-varying service regions in same-day delivery," Transportation Research Part B: Methodological, Elsevier, vol. 170(C), pages 148-168.
    15. Pahwa, Anmol & Jaller, Miguel, 2023. "Assessing last-mile distribution resilience under demand disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 172(C).
    16. Jabbarzadeh, Armin & Haughton, Michael & Pourmehdi, Fahime, 2019. "A robust optimization model for efficient and green supply chain planning with postponement strategy," International Journal of Production Economics, Elsevier, vol. 214(C), pages 266-283.
    17. De La Vega, Jonathan & Gendreau, Michel & Morabito, Reinaldo & Munari, Pedro & Ordóñez, Fernando, 2023. "An integer L-shaped algorithm for the vehicle routing problem with time windows and stochastic demands," European Journal of Operational Research, Elsevier, vol. 308(2), pages 676-695.
    18. Visser, T.R. & Savelsbergh, M.W.P., 2019. "Strategic Time Slot Management: A Priori Routing for Online Grocery Retailing," Econometric Institute Research Papers EI2019-04, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    19. Santos, Maria João & Curcio, Eduardo & Mulati, Mauro Henrique & Amorim, Pedro & Miyazawa, Flávio Keidi, 2020. "A robust optimization approach for the vehicle routing problem with selective backhauls," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
    20. Peng, Xiaoshuai & Zhang, Lele & Thompson, Russell G. & Wang, Kangzhou, 2023. "A three-phase heuristic for last-mile delivery with spatial-temporal consolidation and delivery options," International Journal of Production Economics, Elsevier, vol. 266(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:netspa:v:24:y:2024:i:1:d:10.1007_s11067-023-09611-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.