IDEAS home Printed from https://ideas.repec.org/a/kap/hcarem/v22y2019i2d10.1007_s10729-018-9434-x.html
   My bibliography  Save this article

Appointment scheduling in multi-stage outpatient clinics

Author

Listed:
  • Kenneth J. Klassen

    (Brock University)

  • Reena Yoogalingam

    (Goodman School of Business)

Abstract

Healthcare providers can benefit from adding less costly capacity to their existing resources in order to satisfy demand while maintaining the quality of patient care. The addition of mid-level service providers (MLSPs) such as physician assistants or nurse practitioners that carry out portions of patient care provides a viable alternative for adding physician capacity. This research considers the circumstances under which adding an MLSP to a single-physician outpatient office becomes the best strategy for the clinic, and determines how scheduling policies from the widely-researched single-stage environment should be adjusted for a multi-stage environment. Compared to a single-stage system where a physician completes all portions of the service, we show that adding an MLSP can reduce patient waiting time, patient flow time, and physician service time with patients. This, in turn, can enable the clinic to see more patients and/or free up physician time for other tasks. Appointment scheduling rules are developed for a multi-stage outpatient service system using a simulation optimization approach. Performance measures focus on the patient experience and clinic operation before and during each stage of service.

Suggested Citation

  • Kenneth J. Klassen & Reena Yoogalingam, 2019. "Appointment scheduling in multi-stage outpatient clinics," Health Care Management Science, Springer, vol. 22(2), pages 229-244, June.
  • Handle: RePEc:kap:hcarem:v:22:y:2019:i:2:d:10.1007_s10729-018-9434-x
    DOI: 10.1007/s10729-018-9434-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10729-018-9434-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10729-018-9434-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kuiper, Alex & Mandjes, Michel, 2015. "Appointment scheduling in tandem-type service systems," Omega, Elsevier, vol. 57(PB), pages 145-156.
    2. Chrwan-Jyh Ho & Hon-Shiang Lau, 1992. "Minimizing Total Cost in Scheduling Outpatient Appointments," Management Science, INFORMS, vol. 38(12), pages 1750-1764, December.
    3. Michael C. Fu, 2002. "Feature Article: Optimization for simulation: Theory vs. Practice," INFORMS Journal on Computing, INFORMS, vol. 14(3), pages 192-215, August.
    4. Peter A. Salzarulo & Stephen Mahar & Sachin Modi, 2016. "Beyond Patient Classification: Using Individual Patient Characteristics in Appointment Scheduling," Production and Operations Management, Production and Operations Management Society, vol. 25(6), pages 1056-1072, June.
    5. Edward J. Rising & Robert Baron & Barry Averill, 1973. "A Systems Analysis of a University-Health-Service Outpatient Clinic," Operations Research, INFORMS, vol. 21(5), pages 1030-1047, October.
    6. Jianjun Shi & Shiyu Zhou, 2009. "Quality control and improvement for multistage systems: A survey," IISE Transactions, Taylor & Francis Journals, vol. 41(9), pages 744-753.
    7. Saremi, Alireza & Jula, Payman & ElMekkawy, Tarek & Wang, G. Gary, 2013. "Appointment scheduling of outpatient surgical services in a multistage operating room department," International Journal of Production Economics, Elsevier, vol. 141(2), pages 646-658.
    8. Thomas Rohleder & Peter Lewkonia & Diane Bischak & Paul Duffy & Rosa Hendijani, 2011. "Using simulation modeling to improve patient flow at an outpatient orthopedic clinic," Health Care Management Science, Springer, vol. 14(2), pages 135-145, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Golmohammadi, Davood & Zhao, Lingyu & Dreyfus, David, 2023. "Using machine learning techniques to reduce uncertainty for outpatient appointment scheduling practices in outpatient clinics," Omega, Elsevier, vol. 120(C).
    2. Majed Hadid & Adel Elomri & Regina Padmanabhan & Laoucine Kerbache & Oualid Jouini & Abdelfatteh El Omri & Amir Nounou & Anas Hamad, 2022. "Clustering and Stochastic Simulation Optimization for Outpatient Chemotherapy Appointment Planning and Scheduling," IJERPH, MDPI, vol. 19(23), pages 1-34, November.
    3. Alex Kuiper & Robert H. Lee, 2022. "Appointment Scheduling for Multiple Servers," Management Science, INFORMS, vol. 68(10), pages 7422-7440, October.
    4. F. Davarian & J. Behnamian, 2022. "Robust finite-horizon scheduling/rescheduling of operating rooms with elective and emergency surgeries under resource constraints," Journal of Scheduling, Springer, vol. 25(6), pages 625-641, December.
    5. Yifei Sun & Usha Nandini Raghavan & Vikrant Vaze & Christopher S Hall & Patricia Doyle & Stacey Sullivan Richard & Christoph Wald, 2021. "Stochastic programming for outpatient scheduling with flexible inpatient exam accommodation," Health Care Management Science, Springer, vol. 24(3), pages 460-481, September.
    6. Wu, Xueqi & Zhou, Shenghai, 2022. "Sequencing and scheduling appointments on multiple servers with stochastic service durations and customer arrivals," Omega, Elsevier, vol. 106(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alex Kuiper & Robert H. Lee, 2022. "Appointment Scheduling for Multiple Servers," Management Science, INFORMS, vol. 68(10), pages 7422-7440, October.
    2. Creemers, Stefan & Lambrecht, Marc R. & Beliën, Jeroen & Van den Broeke, Maud, 2021. "Evaluation of appointment scheduling rules: A multi-performance measurement approach," Omega, Elsevier, vol. 100(C).
    3. Kuiper, Alex & de Mast, Jeroen & Mandjes, Michel, 2021. "The problem of appointment scheduling in outpatient clinics: A multiple case study of clinical practice," Omega, Elsevier, vol. 98(C).
    4. Ahmadi-Javid, Amir & Jalali, Zahra & Klassen, Kenneth J, 2017. "Outpatient appointment systems in healthcare: A review of optimization studies," European Journal of Operational Research, Elsevier, vol. 258(1), pages 3-34.
    5. Kemper, Benjamin & Klaassen, Chris A.J. & Mandjes, Michel, 2014. "Optimized appointment scheduling," European Journal of Operational Research, Elsevier, vol. 239(1), pages 243-255.
    6. Xiuli Qu & Yidong Peng & Nan Kong & Jing Shi, 2013. "A two-phase approach to scheduling multi-category outpatient appointments – A case study of a women’s clinic," Health Care Management Science, Springer, vol. 16(3), pages 197-216, September.
    7. Yifei Sun & Usha Nandini Raghavan & Vikrant Vaze & Christopher S Hall & Patricia Doyle & Stacey Sullivan Richard & Christoph Wald, 2021. "Stochastic programming for outpatient scheduling with flexible inpatient exam accommodation," Health Care Management Science, Springer, vol. 24(3), pages 460-481, September.
    8. Shehadeh, Karmel S. & Cohn, Amy E.M. & Epelman, Marina A., 2019. "Analysis of models for the Stochastic Outpatient Procedure Scheduling Problem," European Journal of Operational Research, Elsevier, vol. 279(3), pages 721-731.
    9. Pan, Xingwei & Geng, Na & Xie, Xiaolan & Wen, Jing, 2020. "Managing appointments with waiting time targets and random walk-ins," Omega, Elsevier, vol. 95(C).
    10. Tugba Cayirli & Kum Khiong Yang & Ser Aik Quek, 2012. "A Universal Appointment Rule in the Presence of No‐Shows and Walk‐Ins," Production and Operations Management, Production and Operations Management Society, vol. 21(4), pages 682-697, July.
    11. T. Meersman & B. Maenhout, 2022. "Multi-objective optimisation for constructing cyclic appointment schedules for elective and urgent patients," Annals of Operations Research, Springer, vol. 312(2), pages 909-948, May.
    12. Yao Xiao & Reena Yoogalingam, 2021. "Reserved capacity policies for operating room scheduling," Operations Management Research, Springer, vol. 14(1), pages 107-122, June.
    13. Hyun-Jung Alvarez-Oh & Hari Balasubramanian & Ekin Koker & Ana Muriel, 2018. "Stochastic Appointment Scheduling in a Team Primary Care Practice with Two Flexible Nurses and Two Dedicated Providers," Service Science, INFORMS, vol. 10(3), pages 241-260, September.
    14. Vahab Vahdat & Jacqueline Griffin & James E. Stahl, 2018. "Decreasing patient length of stay via new flexible exam room allocation policies in ambulatory care clinics," Health Care Management Science, Springer, vol. 21(4), pages 492-516, December.
    15. Noordhoek, Marije & Dullaert, Wout & Lai, David S.W. & de Leeuw, Sander, 2018. "A simulation–optimization approach for a service-constrained multi-echelon distribution network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 114(C), pages 292-311.
    16. Bera, Sasadhar & Mukherjee, Indrajit, 2016. "A multistage and multiple response optimization approach for serial manufacturing system," European Journal of Operational Research, Elsevier, vol. 248(2), pages 444-452.
    17. Zheng, Liang & Xue, Xinfeng & Xu, Chengcheng & Ran, Bin, 2019. "A stochastic simulation-based optimization method for equitable and efficient network-wide signal timing under uncertainties," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 287-308.
    18. Tugba Cayirli & Pinar Dursun & Evrim D. Gunes, 2019. "An integrated analysis of capacity allocation and patient scheduling in presence of seasonal walk-ins," Flexible Services and Manufacturing Journal, Springer, vol. 31(2), pages 524-561, June.
    19. Roberto Aringhieri & Giuliana Carello & Daniela Morale, 2016. "Supporting decision making to improve the performance of an Italian Emergency Medical Service," Annals of Operations Research, Springer, vol. 236(1), pages 131-148, January.
    20. Jianxin Fang & Brenda Cheang & Andrew Lim, 2023. "Problems and Solution Methods of Machine Scheduling in Semiconductor Manufacturing Operations: A Survey," Sustainability, MDPI, vol. 15(17), pages 1-44, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:hcarem:v:22:y:2019:i:2:d:10.1007_s10729-018-9434-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.