IDEAS home Printed from https://ideas.repec.org/a/kap/hcarem/v21y2018i1d10.1007_s10729-016-9381-3.html
   My bibliography  Save this article

Optimal healthcare decision making under multiple mathematical models: application in prostate cancer screening

Author

Listed:
  • Dimitris Bertsimas

    (MIT Sloan School of Management and Operations Research Center)

  • John Silberholz

    (MIT Sloan School of Management and Operations Research Center)

  • Thomas Trikalinos

    (Brown University School of Public Health)

Abstract

Important decisions related to human health, such as screening strategies for cancer, need to be made without a satisfactory understanding of the underlying biological and other processes. Rather, they are often informed by mathematical models that approximate reality. Often multiple models have been made to study the same phenomenon, which may lead to conflicting decisions. It is natural to seek a decision making process that identifies decisions that all models find to be effective, and we propose such a framework in this work. We apply the framework in prostate cancer screening to identify prostate-specific antigen (PSA)-based strategies that perform well under all considered models. We use heuristic search to identify strategies that trade off between optimizing the average across all models’ assessments and being “conservative” by optimizing the most pessimistic model assessment. We identified three recently published mathematical models that can estimate quality-adjusted life expectancy (QALE) of PSA-based screening strategies and identified 64 strategies that trade off between maximizing the average and the most pessimistic model assessments. All prescribe PSA thresholds that increase with age, and 57 involve biennial screening. Strategies with higher assessments with the pessimistic model start screening later, stop screening earlier, and use higher PSA thresholds at earlier ages. The 64 strategies outperform 22 previously published expert-generated strategies. The 41 most “conservative” ones remained better than no screening with all models in extensive sensitivity analyses. We augment current comparative modeling approaches by identifying strategies that perform well under all models, for various degrees of decision makers’ conservativeness.

Suggested Citation

  • Dimitris Bertsimas & John Silberholz & Thomas Trikalinos, 2018. "Optimal healthcare decision making under multiple mathematical models: application in prostate cancer screening," Health Care Management Science, Springer, vol. 21(1), pages 105-118, March.
  • Handle: RePEc:kap:hcarem:v:21:y:2018:i:1:d:10.1007_s10729-016-9381-3
    DOI: 10.1007/s10729-016-9381-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10729-016-9381-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10729-016-9381-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jingyu Zhang & Brian T. Denton & Hari Balasubramanian & Nilay D. Shah & Brant A. Inman, 2012. "Optimization of PSA Screening Policies," Medical Decision Making, , vol. 32(2), pages 337-349, March.
    2. David M. Eddy & William Hollingworth & J. Jaime Caro & Joel Tsevat & Kathryn M. McDonald & John B. Wong, 2012. "Model Transparency and Validation," Medical Decision Making, , vol. 32(5), pages 733-743, September.
    3. Ghirardato, Paolo & Maccheroni, Fabio & Marinacci, Massimo, 2004. "Differentiating ambiguity and ambiguity attitude," Journal of Economic Theory, Elsevier, vol. 118(2), pages 133-173, October.
    4. Gilboa, Itzhak & Schmeidler, David, 1989. "Maxmin expected utility with non-unique prior," Journal of Mathematical Economics, Elsevier, vol. 18(2), pages 141-153, April.
    5. Karen M. Kuntz & Iris Lansdorp-Vogelaar & Carolyn M. Rutter & Amy B. Knudsen & Marjolein van Ballegooijen & James E. Savarino & Eric J. Feuer & Ann G. Zauber, 2011. "A Systematic Comparison of Microsimulation Models of Colorectal Cancer," Medical Decision Making, , vol. 31(4), pages 530-539, July.
    6. Daniel Underwood & Jingyu Zhang & Brian Denton & Nilay Shah & Brant Inman, 2012. "Simulation optimization of PSA-threshold based prostate cancer screening policies," Health Care Management Science, Springer, vol. 15(4), pages 293-309, December.
    7. Andrew H. Briggs & Milton C. Weinstein & Elisabeth A. L. Fenwick & Jonathan Karnon & Mark J. Sculpher & A. David Paltiel, 2012. "Model Parameter Estimation and Uncertainty Analysis," Medical Decision Making, , vol. 32(5), pages 722-732, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hossein Kamalzadeh & Vishal Ahuja & Michael Hahsler & Michael E. Bowen, 2021. "An Analytics‐Driven Approach for Optimal Individualized Diabetes Screening," Production and Operations Management, Production and Operations Management Society, vol. 30(9), pages 3161-3191, September.
    2. Peter J. Neumann & David D. Kim & Thomas A. Trikalinos & Mark J. Sculpher & Joshua A. Salomon & Lisa A. Prosser & Douglas K. Owens & David O. Meltzer & Karen M. Kuntz & Murray Krahn & David Feeny & An, 2018. "Future Directions for Cost-effectiveness Analyses in Health and Medicine," Medical Decision Making, , vol. 38(7), pages 767-777, October.
    3. Zheng Zhang & Brian T. Denton & Todd M. Morgan, 2022. "Optimization of active surveillance strategies for heterogeneous patients with prostate cancer," Production and Operations Management, Production and Operations Management Society, vol. 31(11), pages 4021-4037, November.
    4. Saligrama Agnihothri & Leon Cui & Mohammad Delasay & Balaraman Rajan, 2020. "The value of mHealth for managing chronic conditions," Health Care Management Science, Springer, vol. 23(2), pages 185-202, June.
    5. Arthur J. Swersey & John Colberg & Ronald Evans & Michael W. Kattan & Johannes Ledolter & Rodney Parker, 2020. "Decision models for distinguishing between clinically insignificant and significant tumors in prostate cancer biopsies: an application of Bayes’ Theorem to reduce costs and improve outcomes," Health Care Management Science, Springer, vol. 23(1), pages 102-116, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jürgen Eichberger & Simon Grant & David Kelsey, 2012. "When is ambiguity–attitude constant?," Journal of Risk and Uncertainty, Springer, vol. 45(3), pages 239-263, December.
    2. Cerreia-Vioglio, Simone & Maccheroni, Fabio & Marinacci, Massimo & Montrucchio, Luigi, 2012. "Probabilistic sophistication, second order stochastic dominance and uncertainty aversion," Journal of Mathematical Economics, Elsevier, vol. 48(5), pages 271-283.
    3. Chateauneuf, Alain & Eichberger, Jurgen & Grant, Simon, 2007. "Choice under uncertainty with the best and worst in mind: Neo-additive capacities," Journal of Economic Theory, Elsevier, vol. 137(1), pages 538-567, November.
    4. Federica Ceron & Vassili Vergopoulos, 2020. "Recursive objective and subjective multiple priors," Post-Print halshs-02900497, HAL.
    5. Simone Cerreia‐Vioglio & David Dillenberger & Pietro Ortoleva, 2015. "Cautious Expected Utility and the Certainty Effect," Econometrica, Econometric Society, vol. 83, pages 693-728, March.
    6. Jewitt, Ian & Mukerji, Sujoy, 2017. "Ordering ambiguous acts," Journal of Economic Theory, Elsevier, vol. 171(C), pages 213-267.
    7. Jingyi Xue, 2020. "Preferences with changing ambiguity aversion," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 69(1), pages 1-60, February.
    8. Helena Gaspars-Wieloch, 2017. "Newsvendor problem under complete uncertainty: a case of innovative products," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(3), pages 561-585, September.
    9. Claudio A. Bonilla & Pablo A. Gutiérrez Cubillos, 2021. "The effects of ambiguity on entrepreneurship," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 30(1), pages 63-80, February.
    10. Junyi Chai & Zhiquan Weng & Wenbin Liu, 2021. "Behavioral Decision Making in Normative and Descriptive Views: A Critical Review of Literature," JRFM, MDPI, vol. 14(10), pages 1-14, October.
    11. Dominiak, Adam & Duersch, Peter & Lefort, Jean-Philippe, 2012. "A dynamic Ellsberg urn experiment," Games and Economic Behavior, Elsevier, vol. 75(2), pages 625-638.
    12. Marciano Siniscalchi, 2009. "Vector Expected Utility and Attitudes Toward Variation," Econometrica, Econometric Society, vol. 77(3), pages 801-855, May.
    13. Jean-Pierre Drugeon & Thai Ha Huy, 2022. "A not so myopic axiomatization of discounting," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 73(1), pages 349-376, February.
    14. Rieger, Marc Oliver & Wang, Mei, 2012. "Can ambiguity aversion solve the equity premium puzzle? Survey evidence from international data," Finance Research Letters, Elsevier, vol. 9(2), pages 63-72.
    15. Jürgen Eichberger & David Kelsey, 2014. "Optimism And Pessimism In Games," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 55(2), pages 483-505, May.
    16. Faro, José Heleno & Lefort, Jean-Philippe, 2019. "Dynamic objective and subjective rationality," Theoretical Economics, Econometric Society, vol. 14(1), January.
    17. Balafoutas, Loukas & Sutter, Matthias, 2019. "How uncertainty and ambiguity in tournaments affect gender differences in competitive behavior," European Economic Review, Elsevier, vol. 118(C), pages 1-13.
    18. Péter Bayer & Ani Guerdjikova, 2020. "Optimism leads to optimality: Ambiguity in network formation," Working Papers hal-03005107, HAL.
    19. Albrecht, E & Baum, Günter & Birsa, R & Bradamante, F & Bressan, A & Chapiro, A & Cicuttin, A & Ciliberti, P & Colavita, A & Costa, S & Crespo, M & Cristaudo, P & Dalla Torre, S & Diaz, V & Duic, V &, 2010. "Results from COMPASS RICH-1," Center for Mathematical Economics Working Papers 535, Center for Mathematical Economics, Bielefeld University.
    20. Marcello Basili, 2006. "A Rational Decision Rule with Extreme Events," Risk Analysis, John Wiley & Sons, vol. 26(6), pages 1721-1728, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:hcarem:v:21:y:2018:i:1:d:10.1007_s10729-016-9381-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.