IDEAS home Printed from https://ideas.repec.org/a/kap/apfinm/v29y2022i4d10.1007_s10690-022-09365-9.html
   My bibliography  Save this article

Continuous-Time Portfolio Optimization for Absolute Return Funds

Author

Listed:
  • Masashi Ieda

    (Tokyo University of Science)

Abstract

This paper investigates a continuous-time portfolio optimization problem with the following features: (i) a no-short selling constraint; (ii) a leverage constraint, that is, an upper limit for the sum of portfolio weights; and (iii) a performance criterion based on the lower mean square error between the investor’s wealth and a predetermined target wealth level. Since the target level is defined by a deterministic function independent of market indices, it corresponds to the criterion of absolute return funds. The model is formulated using the stochastic control framework with explicit boundary conditions. The corresponding Hamilton–Jacobi–Bellman equation is solved numerically using the kernel-based collocation method. However, a straightforward implementation does not offer a stable and acceptable investment strategy; thus, some techniques to address this shortcoming are proposed. By applying the proposed methodology, two numerical results are obtained: one uses artificial data, and the other uses empirical data from Japanese organizations. There are two implications from the first result: how to stabilize the numerical solution, and a technique to circumvent the plummeting achievement rate close to the terminal time. The second result implies that leverage is inevitable to achieve the target level in the setting discussed in this paper.

Suggested Citation

  • Masashi Ieda, 2022. "Continuous-Time Portfolio Optimization for Absolute Return Funds," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 29(4), pages 675-696, December.
  • Handle: RePEc:kap:apfinm:v:29:y:2022:i:4:d:10.1007_s10690-022-09365-9
    DOI: 10.1007/s10690-022-09365-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10690-022-09365-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10690-022-09365-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Masashi Ieda & Takashi Yamashita & Yumiharu Nakano, 2013. "A liability tracking approach to long term management of pension funds," Papers 1303.3956, arXiv.org.
    2. Sundaresan, S.M., 2000. "Continuous-Time Methods in Finance: A Review and an Assessment," Papers 00-03, Columbia - Graduate School of Business.
    3. Fishburn, Peter C, 1977. "Mean-Risk Analysis with Risk Associated with Below-Target Returns," American Economic Review, American Economic Association, vol. 67(2), pages 116-126, March.
    4. Hiroaki Hata & Jun Sekine, 2017. "Risk-Sensitive Asset Management in a Wishart-Autoregressive Factor Model with Jumps," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 24(3), pages 221-252, September.
    5. P. A. Forsyth & K. R. Vetzal, 2017. "Robust Asset Allocation For Long-Term Target-Based Investing," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(03), pages 1-32, May.
    6. Wang, J. & Forsyth, P.A., 2010. "Numerical solution of the Hamilton-Jacobi-Bellman formulation for continuous time mean variance asset allocation," Journal of Economic Dynamics and Control, Elsevier, vol. 34(2), pages 207-230, February.
    7. F. Cong & C. W. Oosterlee, 2017. "On Robust Multi-Period Pre-Commitment And Time-Consistent Mean-Variance Portfolio Optimization," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(07), pages 1-26, November.
    8. Guiyuan Ma & Song-Ping Zhu, 2019. "Optimal investment and consumption under a continuous-time cointegration model with exponential utility," Quantitative Finance, Taylor & Francis Journals, vol. 19(7), pages 1135-1149, July.
    9. Amine Ismail & Huyên Pham, 2019. "Robust Markowitz mean‐variance portfolio selection under ambiguous covariance matrix," Mathematical Finance, Wiley Blackwell, vol. 29(1), pages 174-207, January.
    10. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    11. Romuald Elie & Nizar Touzi, 2008. "Optimal lifetime consumption and investment under a drawdown constraint," Finance and Stochastics, Springer, vol. 12(3), pages 299-330, July.
    12. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    13. Carmine De Franco & Johann Nicolle & Huyên Pham, 2019. "Bayesian Learning For The Markowitz Portfolio Selection Problem," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(07), pages 1-40, November.
    14. Huang, Dashan & Zhu, Shu-Shang & Fabozzi, Frank J. & Fukushima, Masao, 2008. "Portfolio selection with uncertain exit time: A robust CVaR approach," Journal of Economic Dynamics and Control, Elsevier, vol. 32(2), pages 594-623, February.
    15. Panos Xidonas & Ralph Steuer & Christis Hassapis, 2020. "Robust portfolio optimization: a categorized bibliographic review," Annals of Operations Research, Springer, vol. 292(1), pages 533-552, September.
    16. J. Wang & P. A. Forsyth, 2012. "Comparison Of Mean Variance Like Strategies For Optimal Asset Allocation Problems," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 15(02), pages 1-32.
    17. Christopher W. Miller & Insoon Yang, 2015. "Optimal Control of Conditional Value-at-Risk in Continuous Time," Papers 1512.05015, arXiv.org, revised Jan 2017.
    18. Guiyuan Ma & Song-Ping Zhu & Boda Kang, 2020. "A Numerical Solution of Optimal Portfolio Selection Problem with General Utility Functions," Computational Economics, Springer;Society for Computational Economics, vol. 55(3), pages 957-981, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Masashi Ieda, 2021. "Continuous-time Portfolio Optimization for Absolute Return Funds," Papers 2108.09985, arXiv.org, revised Mar 2022.
    2. Guiyuan Ma & Song-Ping Zhu, 2022. "Revisiting the Merton Problem: from HARA to CARA Utility," Computational Economics, Springer;Society for Computational Economics, vol. 59(2), pages 651-686, February.
    3. Johnson Kakeu, 2017. "Environmentally conscious investors and portfolio choice decisions," Journal of Sustainable Finance & Investment, Taylor & Francis Journals, vol. 7(4), pages 360-378, October.
    4. Guiyuan Ma & Song-Ping Zhu & Boda Kang, 2020. "A Numerical Solution of Optimal Portfolio Selection Problem with General Utility Functions," Computational Economics, Springer;Society for Computational Economics, vol. 55(3), pages 957-981, March.
    5. John Y. Campbell, 2000. "Asset Pricing at the Millennium," Journal of Finance, American Finance Association, vol. 55(4), pages 1515-1567, August.
    6. van Staden, Pieter M. & Dang, Duy-Minh & Forsyth, Peter A., 2021. "The surprising robustness of dynamic Mean-Variance portfolio optimization to model misspecification errors," European Journal of Operational Research, Elsevier, vol. 289(2), pages 774-792.
    7. Alireza Ghahtarani & Ahmed Saif & Alireza Ghasemi, 2021. "Robust Portfolio Selection Problems: A Comprehensive Review," Papers 2103.13806, arXiv.org, revised Jan 2022.
    8. Long, Hongwei & Ma, Chunhua & Shimizu, Yasutaka, 2017. "Least squares estimators for stochastic differential equations driven by small Lévy noises," Stochastic Processes and their Applications, Elsevier, vol. 127(5), pages 1475-1495.
    9. Carré, Sylvain & Cohen, Daniel & Villemot, Sébastien, 2019. "The sources of sovereign risk: a calibration based on Lévy stochastic processes," Journal of International Economics, Elsevier, vol. 118(C), pages 31-43.
    10. Di Giacinto, Marina & Federico, Salvatore & Gozzi, Fausto & Vigna, Elena, 2014. "Income drawdown option with minimum guarantee," European Journal of Operational Research, Elsevier, vol. 234(3), pages 610-624.
    11. Palacios Huerta, Ignacio & Pérez Kakabadse, Alonso, 2013. "Consumption and portfolio rules whit stochastic hyperbolic discounting," IKERLANAK http://www-fae1-eao1-ehu-, Universidad del País Vasco - Departamento de Fundamentos del Análisis Económico I.
    12. Veld, Chris & Veld-Merkoulova, Yulia V., 2008. "The risk perceptions of individual investors," Journal of Economic Psychology, Elsevier, vol. 29(2), pages 226-252, April.
    13. Suleyman Basak & Anna Pavlova, 2005. "Monopoly Power and the Firm’s Valuation: A Dynamic Analysis of Short versus Long-Term Policies," Studies in Economic Theory, in: Alessandro Citanna & John Donaldson & Herakles Polemarchakis & Paolo Siconolfi & Stephan E. Spear (ed.), Essays in Dynamic General Equilibrium Theory, pages 1-34, Springer.
    14. Stan Hurn & J.Jeisman & K.A. Lindsay, 2006. "Teaching an old dog new tricks: Improved estimation of the parameters of SDEs by numerical solution of the Fokker-Planck equation," Stan Hurn Discussion Papers 2006-01, School of Economics and Finance, Queensland University of Technology.
    15. Zuo Quan Xu & Fahuai Yi, 2014. "An Optimal Consumption-Investment Model with Constraint on Consumption," Papers 1404.7698, arXiv.org.
    16. Stan Hurn & J.Jeisman & K.A. Lindsay, 2006. "Seeing the Wood for the Trees: A Critical Evaluation of Methods to Estimate the Parameters of Stochastic Differential Equations. Working paper #2," NCER Working Paper Series 2, National Centre for Econometric Research.
    17. Franklin Allen, 2001. "Do Financial Institutions Matter?," Journal of Finance, American Finance Association, vol. 56(4), pages 1165-1175, August.
    18. Bretó, Carles & Veiga, Helena, 2011. "Forecasting volatility: does continuous time do better than discrete time?," DES - Working Papers. Statistics and Econometrics. WS ws112518, Universidad Carlos III de Madrid. Departamento de Estadística.
    19. Cong, F. & Oosterlee, C.W., 2016. "Multi-period mean–variance portfolio optimization based on Monte-Carlo simulation," Journal of Economic Dynamics and Control, Elsevier, vol. 64(C), pages 23-38.
    20. Chen, Songxi & Peng, Liang & Yu, Cindy, 2013. "Parameter Estimation and Model Testing for Markov Processes via Conditional Characteristic Functions," MPRA Paper 46273, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:apfinm:v:29:y:2022:i:4:d:10.1007_s10690-022-09365-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.